
P/N 108744 Rev. A1

AMT Datasouth Fastmark

PALTM Print and Program
Language Reference Guide

PUBLISHED BY
AMT Datasouth

4216 Stuart Andrew Boulevard

Charlotte, North Carolina 28217

Phone: 704.523-8500

Service 800.476.2450

Sales: 800.476.2120

Internet: www.amtdatasouth.com

Copyright  2003 by AMT Datasouth Corporation.

All rights reserved. No part of this document may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

Revised 4 December, 2003.

PAL is a trademark of AMT Datasouth Corporation.

All other brand and product names are trademarks or registered trademarks of their
respective companies.

Contents
1. Introduction ... 1

2. PAL Fundamentals.. 3
2.1. The PAL Interpreter ...3

2.2. Sending Data to PAL Printers..3

2.3. PAL Objects...3

2.4. Interpreter Operation...4

2.5. Operand Stack..4

2.6. Post-Fix Notation...5

2.7. systemdict, globaldict, userdict ..6

2.8. Dictionary Stack...6

2.9. Virtual Memory..7

2.10. Transformation Matrix...8

3. Objects .. 11
3.1. Simple Objects ...11

3.1.1. Integer Objects...11

3.1.2. Fixed-Point Objects ...11

3.1.3. Boolean Objects...12

3.1.4. String Objects ..12

3.1.5. Name Objects...13

3.1.6. Mark Objects ...15

3.1.7. Null Objects ...15

3.2. Composite Objects ...15
3.2.1. Array Objects...15

3.2.2. Dictionary Objects ...17

3.2.3. Procedure Objects..17

vi PAL Print and Program Language Reference

3.3. Internal Objects ..18
3.3.1. Intrinsic Operator Objects ..18

3.3.2. File Objects ..19

3.3.3. Font Objects ...19

4. Operators ... 21
4.1. Alphabetical Summary...22

A. Bar Code Considerations .. 199
Precision Bar Code Control ...199

Bar Code Parameter Defaults...200

Determining the Width of Bar Code Bit Maps ..200

B. Document Revisions........Error! Bookmark not defined.
2000.06.12..Error! Bookmark not defined.

1994.08.26..Error! Bookmark not defined.

1993.10.01..Error! Bookmark not defined.

1993.04.09..Error! Bookmark not defined.

1993.04.03..Error! Bookmark not defined.

1993.03.19..Error! Bookmark not defined.

1. Introduction
Welcome to the world of the PAL™ Print and Program Language. Since PAL™ is both a
powerful printing language and programming language, many print applications not previously
possible are now within reach.

Now you don’t have to get a different software-specific printer for every application in your
facility. AMT Datasouth PAL™ enabled printers such as the Fastmark™ line can translate, filter,
interpret and understand almost any data stream. You can now replace obsolete devices with cost-
effective, high-print-quality thermal printers -- with no expensive software changes.

Here is a brief overview:
! Quick, high-resolution printing of labels, tags and more
! Features PAL™ (no host/PC software reprogramming required!)
! Works for all departments, regardless of what software they’re using
! Can be run even when the system is down (label format is stored in printer)
! Offers plug and play convenience
! Barcodes can be added to existing print jobs without changing host/PC software

How does PAL™ enable you to print your current data stream—without reprogramming
your system?

As documented in this manual, PAL™ is not only a powerful printing language, it is also a fully
functional programming language. Utilizing this manual, powerful PAL™ programs may be
written and loaded in the printer to perform a variety of tasks such as interpreting legacy data
steams. Or we can prepare a PAL program for each of your applications and pre-load it into your
PAL™ enabled printer such as Fastmark™ at the factory. These programs enable the PAL™
enabled printer to print labels by filling in the variable fields using your current data stream. This
data stream could have been intended for a laser, dot matrix, ink jet or embossing printer. And, you
don’t have to worry about the software driver in the host, because the formatting is all done within
the printer.

PAL™ enabled printers such as Fastmark are packed with features and options such as:
! Parallel and serial ports
! Optional Ethernet, Twinax, Coaxial and USB communication
! Extensive on-board complement of linear and 2-D symbology barcodes
! Smooth scalable fonts
! Expandable memory options
! Flash memory drives for storing PAL™ programs and other data.
! Optional external keyboard for stand-alone applications
! SRAM and Flash memory cards
! Optional real-time clock (RTC) with Flash memory
! Optional Peel and Present with label taken sensor
! Optional Cutters
! Rugged cabinet construction

All PAL™ enabled products include the latest in Windows™ drivers.

To learn more about how the PAL™ Print and Program Language can be used to quickly
and cost effectively integrate PAL™ enabled printers such as Fastmark™ into your facility,

call AMT Datasouth at 800-215-9192.

2. PAL Fundamentals
2.1. The PAL Interpreter

Every PAL printer contains a copy of the PAL interpreter. The PAL interpreter is the software
inside the PAL printer which the printer's internal computer executes. Although the PAL
interpreter serves a different purpose, it is essentially an application program just like any word
processing or spreadsheet application program run on a general purpose computer.

2.2. Sending Data to PAL Printers
Word processing and speadsheet applications usually accept their data from a user sitting at a
keyboard. The PAL interpreter usually accepts its data from a host computer via the printer's
electrical interface with the host computer. Word processors and spreadsheets can also accept data
from other sources like files located on the user's disk drive. The PAL interpreter can also accept
data from other sources like memory cards plugged into the printer.

The data supplied to the PAL interpreter consists of a series of human readable characters. The
PAL interpreter does not require any special control characters which only computers can
understand.

2.3. PAL Objects
When a host computer sends data to a PAL printer, the PAL interpreter software inside the printer
receives the data and analyzes it. First, the interpreter groups the series of characters into
individual objects. Each object represents a single piece of data for the interpreter. Therefore, the
interpreter views the data it receives as a series of data objects.

The interpreter separates the series of characters into objects by looking for one or more spaces or
other special character. PAL recognizes the following characters as being the same as a space.
PAL refers to all of these characters as whitespace characters.

Character ASCII
Code

Octal
Value

Hexadecimal
Value

Space SP 040 20
Tab HT 011 09
Carriage Return CR 015 0D
New Line / Line Feed LF 012 0A
Null NUL 000 00
Form Feed FF 014 0C

4 PAL Language Reference

PAL requires the user to separate each object with at least one of the preceeding whitespace
characters, or one of the following special characters.

Character Description
Octal
Code

Hexadecimal
Code

(Left/Open Parenthesis 050 28
) Right/Close Parenthesis 051 29
< Left/Open Angle Bracket or Less Than 074 3C
> Right/Close Angle Bracket or Greater Than 076 3E
[Left/Open Square Bracket 133 5B
] Right/Close Square Bracket 135 5D
{ Left/Open Brace 173 7B
} Right/Close Brace 175 7D
/ Forward Slash 057 2F

% Percent 045 25

The special characters listed above each have a special meaning for PAL. The user should only use
one or more of these characters to separate objects when the user also wishes PAL to perform the
action associated with the character.

 2.4. Interpreter Operation
Normally the PAL interpreter performs a function in response to each object received. For data
objects, PAL usually just stores the object within the printer's memory. Executable objects instruct
PAL to perform some operation. The operation usually involves one or more of the data objects
previously received.

The interpreter immediately performs the appropriate function for each object upon receipt of the
object. However, PAL does not consider an object fully received until it receives the separation
character which follows the object. Therefore, if the host computer sends the printer a command
without following the command with a space or other separation character, the printer will not
respond to the command until it receives the separation character. Until PAL receives the
separation character, PAL cannot know for sure whether or not it has received all the characters of
the object.

2.5. Operand Stack
As PAL receives data objects from the host, it pushes the objects onto an internal structure known
as the operand stack. PAL places each successive object on top of the previous object on this stack
of objects. As long as the interpreter continues to receive data objects, it will continue pushing the
objects onto this stack.

When PAL receives an object which indicates some action for the interpreter to perform, the action
will usually involve zero or more data objects know as operands or parameters. For example, a div
(divide) operation requires two operands — the divisor and the dividend. In order to perform the
operation, PAL pops the top two operands off the operand stack. It then divides one operand by
the other operand in order to calculate the quotient. PAL then pushes the quotient onto the operand
stack.

PAL Fundamentals 5

2.6. Post-Fix Notation
PAL receives data objects and operation objects in an order known as post-fix notation. This
means that the data upon which an operator will operate occurs before the operator itself. This
differs from the algebraic notation which everyone learned in school.

In school, algebraic equations looked like the following.

(1 + 2) × (4 + 5)

In post-fix notation, this same equation has the following format.

1 2 + 4 5 + ×

Post-fix notation has the advantage that it does not require parethesis or other special symbols to
override operator precedence. The preceding algebraic equation required parenthesis it order to
give the addition operations precedence over the multipication operation. In post-fix notation, the
operators have no implied precedence. The left-most operation occurs first, and the right-most
operator occurs last. Therefore, both the computer and human need only perform the equation from
left to right as written.

In order to perform very complex equations, both algebraic and post-fix notation rely upon an op-
erand stack. When humans perform complex algebraic calculations manually, they imitate an op-
erand stack using a piece of scratch paper. When using an algebraic calculator, the calculator
contains an internal operand stack. The "(" and ")" keys on the calculator instruct the calculator to
perform push and pop operations. As the equations above show, an algebraic calculation would
require 12 key presses, not including the final "=" key, on a calculator.

Hewlett-Packard calculators have been based on reverse polish notation (or "RPN" for short) for
years. Reverse polish notation operates the same as post-fix notation. The post-fix notation equa-
tion shown above also shows seven of the nine key strokes necessary to perform the calculation
using a Hewlett-Packard RPN calculator. The equation does not show the necessary "enter" key
press following the 1 and 4.

Although not as familiar to us as algebraic notation, post-fix notation actually provides a faster and
more straight-forward approach to performing calculations.

PAL performs all of its operations using post-fix notation. As PAL encounters data objects, it
automatically pushes the objects onto the operand stack. When PAL encounters an object which
indicates an action to perform, PAL pops any necessary operands from the operand stack, performs
the action, and pushes any results onto the operand stack. In PAL, the preceding equation would
appear as the following sequence of PAL objects.

1 2 add 4 5 add mul

When PAL encounters the data object "1," it pushes the object onto the operand stack. PAL
performs the same action for the data object "2." PAL then encounters the operator "add." In
response, the interpreter pops the "2" and the "1" off the stack and adds them together. This pro-
duces the result data object "3," which PAL pushes onto the stack.

Next PAL encounters the data objects "4" and "5," which it pushes onto the stack. Then PAL
encounters the operator "add," so PAL pops the "4" and "5," adds them together, and pushes the
resulting "9". Finally, PAL encounters the "mul" operator. In response, PAL pops the "9" from the

6 PAL Language Reference

second "add" and the "3" from the first add and multiplies them together. It then pushes the result,
"27," onto the operand stack.

The following diagram shows the contents of the operand stack when PAL finishes processing
each object in the above sequence.

1 2 add 4 5 add mul

Stack 5
2 4 4 9

1 1 3 3 3 3 29

2.7. systemdict, globaldict, userdict
PAL supports a data structure called a dictionary. Dictionaries contain an arbitrary collection of
objects organized into pairs. PAL treats the first object of each pair as the key object, and the
second object as the value object. This organization allows PAL to search a dictionary for a
particular key object, and recover the value object associated with the key.

When the PAL interpreter initializes, it automatically creates three dictionaries to help it keep track
of the various objects a PAL programmer will store into the printer's memory. PAL gives these
dictionaries the names systemdict, globaldict, and userdict.

Initially, userdict and globaldict do not contain any objects. systemdict contains all the names
which PAL recognizes as operators, as well as other predefined names like true, false, and mark.

The operator names themselves do not actually instruct the PAL interpreter to perform an op-
eration. Instead, PAL has a special internal object type known as an intrinsic operator object.
When the PAL interpreter encounters one of these intrinsic operator objects, the interpreter
performs the action indicated by the object.

systemdict contains all the operator names as key objects. It also contains all the intrinsic operator
objects as value objects associated with the appropriate name objects. Therefore, when PAL
receives an executable name object from the host computer, PAL searches systemdict to find a
dictionary key entry which matches the name object.

When PAL locates the matching name, the interpreter then recovers the value object associated
with the name. For the operator names, PAL will find an intrinsic operator object associated with
the name. The PAL interpreter then performs the action indicated by the intrinsic operator object.

2.8. Dictionary Stack
During initialization, PAL pushes the three standard dictionaries, systemdict, globaldict, and
userdict onto an internal structure known as the dictionary stack. Therefore, immediately after
initialization, the dictionary stack contains the following.

Dictionary Stack
userdict

globaldict
systemdict

PAL Fundamentals 7

When PAL encounters an executable name, PAL goes to the dictionary stack to find out what to
do. PAL starts by trying to locate the name in the top-most dictionary on the dictionary stack. If it
cannot find the name, it then tries the next dictionary down on the stack. PAL continues down the
stack until it locates the name. Once PAL locates the name, it stops searching.

Since PAL stops searching when it locates the name, any entries for a given name in a dictionary
on the top of the dictionary stack will supercede an entry in a dictionary on the bottom of the stack.
As the above diagram shows, systemdict resides on the very bottom on the dictionary stack.
Therefore, any entry for a name in any other dictionary on the dictionary stack will have
precedence over the entry for that name in systemdict.

As a result, the programmer has the freedom to redefine any of the names which PAL has
predefined for performing the various PAL operations. However, redefining PAL operators only
serves to make a PAL order sequence difficult for another programmer to understand.

The dictionary stack also serves a more important purpose. It allows the PAL programmer to
define new names to which the PAL interpreter will automatically respond. The programmer can
add a new name with an associated value object to one of the dictionaries on the dictionary stack.
Later, when PAL encounters the name, it will search the dictionary stack and find the
programmer's entry.

If the programmer associates a procedure object with the name, PAL will automatically execute the
procedure. If the programmer associations an integer, string, or other data object with the name,
PAL will automatically push the data object onto the operand stack.

The programmer may not alter the contents of systemdict. However, PAL automatically provides
the programmer with the two dictionaries userdict, and globaldict. The programmer may freely
add and delete entries from these dictionaries. During initialization, PAL creates userdict and
globaldict as empty dictionaries.

PAL also provide operators which allow the programmer to push new dictionaries onto the
dictionary stack and later pop them off the stack. This allows the programmer to collect localized
definitions into separate dictionaries and then discard all the definitions by simply popping the
dictionaries from the dictionary stack.

Although PAL allows the programmer to add and delete entries within userdict and globaldict,
PAL does not allow the programmer to remove the three standard dictionaries themselves from the
dictionary stack.

2.9. Virtual Memory
The interpreter keeps all user data objects as well as the various interpreter data structures within
the virtual memory area. PAL refers to this memory area as virtual memory because the pro-
grammer does not have direct access to this memory.

PAL dynamically manages this space for the programmer. As the programmer sends objects to the
PAL interpreter, the interpreter automatically allocates space for the objects within the virtual
memory area. When the programmer no longer requires a particular object, PAL automatically
frees the object's memory for use by other objects.

PAL will keep an object within virtual memory for as long as the programmer maintains a ref-
erence to the object. Once the programmer eliminates all references to the object, PAL auto-
matically removes the object from memory.

8 PAL Language Reference

The programmer still has references to a given object so long as the programmer still has some
means of acessing the object. For example, object A may contain the only reference anywhere in
memory to the object B. In turn, the object B may contain the only reference anywhere in memory
to the object C. And the operand stack may contain the only reference to object A.

So long as a reference remains anywhere in memory to the object A, PAL will keep all of these
objects in the virtual memory. However, if the programmer pops the reference to object A from the
operand stack without creating an alternate reference to the object, the programmer will have
eliminated all references to object A. As a result, PAL will eliminate object A from memory.

When PAL eliminates object A from memory, it also eliminates the only reference to object B.
Therefore, PAL also eliminates object B from memory. This results in the elimination of the only
reference to object C, so PAL eliminates it from memory as well.

The amount of virtual memory available to the programmer varies between PAL printer models. In
can also vary between two different printers with the same amount of internal memory. This
variance results from the amount of memory the PAL interpreter requires in order to manage the
various options on different printer models.

PAL provides the vmstatus operator to allow the programmer to determine the amount of virtual
memory available on a given printer model. The operator also provides information relating to the
amount of virtual memory already allocated for PAL objects and other data.

2.10. Transformation Matrix
All printers provide some form of coordinate system. The coordinate system provides the basis for
the user to instruct the printer where to locate a particular character or other image on the page.
Many non-PAL printers base their coordinate system on the printer's dots-per-inch or dots-per-
millimeter resolution.

This works fine so long as the host computer programmer must only control that particular printer
model. However, if the programmer must also control other printers which use different
resolutions, then the same control sequences will not work in all cases, even if all printers use the
same basic control language.

PAL's device independent coordinate system allows the host programmer to use the same control
sequence for all PAL printers. This includes PAL printers with different resolutions as well as from
different printer manufacturers.

In addition to providing a device independent coordinate system, PAL allows the programmer to
define this coordinate system to meet the needs of the programmer. By default, PAL uses a
typesetters' unit of measure known as a point. No precise definition of a point exists, however
typesetters generally use values close to 1/72 of an inch. Most computer software, including PAL,
use exactly 1/72 of an inch as the definition of a point.

PAL realizes that a point may not suit every programmer's requirements. Therefore, PAL provides
operators which allow the programmer to alter the current coordinate system. The programmer can
freely scale, rotate, and relocate the origin of the user coordinate system.

In order to convert the user's coordinates to dots on a printed page, PAL maintains an internal
mathematical construct known as a transformation matrix. The transformation matrix contains six
values which PAL changes whenever the user alters the coordinate system. In mathematics, a

PAL Fundamentals 9

transformation matrix also includes three additional constant values. However, since the extra
values do not change, PAL does not need to keep the values as part of the matrix.

The following diagram shows the mathematical representation of a transformation matrix.

A B 0
C D 0
E F 1

Special mathematical rules exist for changing the values A through F in response to scaling, ro-
tating, and relocating the origin (translating) of a coordinate system. However, once PAL has
updated the six values to reflect any changes to the user's coordinate system, PAL simply uses
these values in the following formulas to convert the user's coordinates to actual dot positions on a
printed page.

X' = AX + CY + E
Y' = BX + DY + F

X and Y represent a coordinate in the user's coordinate system. X' and Y' represent the same co-
ordinate on a printer page.

PAL uses the term current transformation matrix to indicate the transformation matrix currently in
use by PAL. PAL automatically initializes the current transformation matrix to the values
necessary to convert the PAL default coordinate system (points) to the physical page coordinate
system (dots).

The discussions within this manual of the various PAL operators which affect the current
transformation matrix describe the various ways in which the programmer may alter the matrix.

3. Objects
PAL allows programmers to store various different types of data into the printer's memory. PAL
uses the term object to refer to each different piece of data stored within the printer's memory.
Each object has a type. An object's type indicates how PAL will interact with that particular object.

The PAL language groups the various object types into two classifications — simple and com-
posite. In addition, PAL includes a classification of object types internally used by PAL. This
manual discusses each object type under its appropriate classification.

3.1. Simple Objects
Simple objects represent the basic types of data which the programmer can store within the printer.
This differs from composite objects which group together collections of simple objects as well as
other composite objects. The simple object classification includes the following types:

Integer
Fixed-Point
Boolean
String
Name
Mark
Null

3.1.1. Integer Objects
PAL allows integer objects to have numerical values between -999,999,999 and +999,999,999,
inclusive. Integer objects cannot have any fractional digits. In order words, an integer object can-
not have the value 1.5.

When the programmer includes an integer value as part of a PAL sequence, the value can include
only the digits 0 through 9 with an optional leading plus (+) or minus (-) sign. If the programmer
does not specify a plus or minus sign, PAL assume a positive value. Integer values may not include
a decimal point even if the programmer places only zeros to the right of the decimal point. The
value also may not include commas or other punctuation.

The following PAL sequence specifies three integer objects for the PAL interpreter.

-45 +36 999

3.1.2. Fixed-Point Objects
PAL allows fixed-point objects to have numerical values between -999,999,999.999,999,999 and
+999,999,999.999,999,999, inclusive. This means that fixed-point objects may have nine digits to
the left of the decimal point, and another nine digits to the right of the decimal point.

PAL differs from many other programming languages in its use of fixed-point values. Most other
programmer languages use floating-point values. Floating-point values usually allow the
programmer to specify a small number of significant digits, but the digits may have almost any
relationship to the decimal point. For example, many programming languages allow around six

12 PAL Language Reference

significant digits for their floating-point values. However, these six digits can represent the value 1
trillion (1,000,000,000,000) or 1 trillionth (0.000,000,000,001).

Floating-point values work very well in scientific applications. For example, specifying the dis-
tance to a star or the size of an atom. However, they do not work very well in business applica-
tions. Business applications tend to require a smaller range of values, but many more significant
digits. Few companies have the need to calculate their worth in the billions. And those companies
which do can afford super computers to count their money for them.

However, many companies require calculations in the tens of millions or less, with every digit
being significant. Floating-point values generally cannot keep track of sufficient digits to satisfy
this requirement. Therefore, PAL relies upon large fixed-point numbers instead of more con-
ventional floating-point values.

When the programmer includes a fixed-point value as part of a PAL sequence, the value must have
a particular format. The value may start with an optional plus (+) or minus (-) sign. If the
programmer does not include a plus or minus sign, PAL will assume a positive value. The value
must also have a digit, 0 through 9, both before and after a decimal point. When PAL sees the
decimal point, PAL knows to treat the value as a fixed-point value rather than an integer value.

The value may not include commas or other punctuation. If the programmer does not include a
digit both before and after the decimal point, PAL will treat the value as a name object rather than
a fixed-point object. For example, PAL treats "1." and ".1" as name objects. The programmer must
specify "1.0" or "0.1" in order for PAL to treat the objects as fixed-point numbers.

3.1.3. Boolean Objects
Boolean objects can only have the value true or false. PAL usually creates boolean objects in
response to performing some test. For example, if the programmer instructs PAL to test two
integers for equality, PAL will create a boolean object which indicates the result of the test. If PAL
finds the integers equal, PAL will create a boolean object with the value true. If PAL does not find
the integers equal, PAL will create a boolean object with the value false.

PAL also includes definitions for the names true and false. The name true corresponds with a
boolean object having the value true. The name false corresponds with a boolean object having
the value false.

3.1.4. String Objects
Strings consists of a variable length collection of bytes. In simple applications, each byte usually
represents a printable character. A string can contain from zero to 30,000 bytes.

Since each string object can have a variable number of bytes associated with it, PAL stores the
string object and the collection of bytes (the string value) in separate parts of memory. The string
object contains only a reference to the string value.

When the programmer instructs PAL to perform an operation which causes PAL to duplicate a
string object, PAL only duplicates the object part of the string. PAL does not duplicate the value
portion of the string. As a result, the duplication creates two objects which both refer to the same
collection of bytes. Special operators exist which allow the programmer to instruct PAL to also
duplicate the value portion of the string.

Objects 13

In many cases, the programmer will not wish PAL to duplicate the value portion. Duplicating only
the object portion of the string does not consume very much of the printer's memory. On the other
hand, duplicating the value portion of a large string will consume a large amount of the printer's
memory.

PAL accepts strings as text enclosed in parenthesis. For example, "(hello)" specifies a string
consisting of the characters "h," "e," "l," "l," and "o."

PAL also allows the programmer to include parenthesis as part of the string. Strings containing
balanced pairs of parenthesis do not require any special treatment. For example, PAL also accepts
"(ab(cd)ef)" as a perfectly valid string. In this case, the string contains eight characters —
"ab(cd)ef."

If the string contains unbalanced parenthesis, then the programmer should place the special back-
slash (\) character in front of each parenthesis. The programmer may also use a back-slash even
when the string contains balanced parenthesis. A computer program which generates the strings to
send to a PAL printer would normally just place a back-slash in front of every parenthesis.
Therefore, the programmer could also specify the preceeding string as "(ab\(cd\)ef."

In order to include the back-slash as part of a string, the programmer need only specify two back-
slashes. For example, specifying "(The back-slash character \(\\\) is a prefix!)" creates the
string "The back-slash character (\) is a prefix!"

The following table list all the special characters which the programmer can place into strings
using the back-slash character.

PAL
Code Description

ASCII
Symbol

Octal
Value

Hexadecimal
Value

\n New Line LF 012 0A
\r Carriage Return CR 015 0D
\t Tab HT 011 09
\b Backspace BS 010 08
\f Form-Feed FF 014 0C
\\ Back-Slash \ 134 5C
\(Left (Open) Parenthesis (050 28
\) Right (Close) Parenthesis) 051 29
\ddd Character for Octal Code ddd any ddd

3.1.5. Name Objects
Just like strings, names consist of a variable length collection of bytes. In simple applications, each
byte usually represents a printable character. A name can contain from one to 30,000 bytes.

Since each name can have a variable number of bytes associated with it, PAL stores a name object
in exactly the same manner as it stores string objects. In fact, PAL treats name objects and string
objects in an almost identical manner.

Each name objects has one of three different attributes — executable, literal, or immediate
evaluation. The programmer specifies which attribute the name object should have by placing
zero, one, or two forward slashes (/) immediately in front of the name.

If the programmer does not place any forward slash in front of the name, PAL treats the name as
executable. For example, PAL will treat the character sequence "MyName" as an executable
name. Provided PAL does not encounter the name while creating a procedure, PAL will try to find

14 PAL Language Reference

an object or an operation associated with the name. If PAL encounters the name while creating a
procedure, PAL does not execute the name at that time. PAL simply stores the name as part of the
procedure. PAL will execute the name later when the programmer instructs PAL to execute the
procedure.

If the programmer places a single forward slash in front of the name, PAL treats the name as
literal. For example, PAL will treat the character sequence "/MyName" as a literal name. This
means that PAL will simply create a name object in a manner similar to a string object.

If the programmer places two forward slashes in front of the name, PAL immediately evaluates the
name. For example, PAL will treat the character sequence "//MyName" as an immediately
evaluated name. When PAL evaluates, as opposed to executes, a name, PAL simply replaces the
name with the object associated with the name. PAL does not attempt to execute the object
associated with the name.

Except during a procedure definition, the difference between executable and immediately evalu-
ated only matters for names associated with procedures or PAL intrinsic operators. In all other
case, executable and immediately evaluated names produce the same results.

During a procedure definition, PAL simply records executable names as part of the procedure. It
does not attempt to execute the name at that time. However, PAL still substitutes immediately
evaluated names with their associated objects even during procedure definitions.

Using an immediately evaluated name during a procedure definition can produce entirely different
results from using an executable name. For example, the programmer has associated the name
FirstProc with a procedure object. The programmer then defines a second procedure,
SecondProc, which includes a reference to FirstProc.

If the programmer specifies FirstProc as an executable name (no "/" in front of the name), PAL
will simply record the executable name FirstProc within SecondProc's definition. Later, when
the programmer instruct PAL to execute SecondProc, PAL will also execute the procedure
associated with the name FirstProc when it encounters the executable name.

If the programmer changes the procedure associated with FirstProc between executions of
SecondProc, PAL will always execute the procedure associated with FirstProc at the time PAL
executes SecondProc. It will not matter which procedure was associated with FirstProc at the
time SecondProc was defined. In fact, PAL will not care whether the programmer has associated
any procedure with FirstProc before defining SecondProc. PAL only cares about the procedure
associated with FirstProc's at the time PAL encounters FirstProc when executing SecondProc.

If the programmer specifies FirstProc as an immediately evaluated name (//FirstProc) within the
definition of SecondProc, PAL will immediately substitute //FirstProc with the current object
associated with FirstProc. This means that PAL will place the procedure object associated with
FirstProc directly within the definition of SecondProc.

PAL will insert the procedure object and not the instructions contained within the procedure
object. This will have the same effect as having used the "{" and "}" operators to define the pro-
cedure directly within SecondProc. When PAL encounters the procedure object while executing
SecondProc, PAL will simply push the procedure object onto the operand stack. PAL will not
automatically try to execute the instructions contained within the procedure object.

Names can include almost any combination of characters, numbers, and special symbols. However,
names do not have special enclosing characters like the parenthesis required by strings. This means

Objects 15

that names cannot include the special characters which PAL uses for other purposes. Specifically,
names cannot include any of the following object separator characters.

() < > [] { } / %

Also, a name cannot satisfy the rules for an integer or fixed-point object. Otherwise, PAL will treat
the name as an integer or fixed-point object. Therefore, PAL accepts "1+" as a name, but "+1" as
an integer object. Likewise, PAL accepts ".1" and "1." as names, but "0.1" and "1.0" as fixed-
point objects.

3.1.6. Mark Objects
A mark object does not have a value. It only has the type mark. Mark objects serve a special pur-
pose under PAL. Several PAL operators manipulate all objects pushed onto the operand stack
above a mark object. PAL has predefined the name mark and has associated the name with a mark
object.

3.1.7. Null Objects
PAL uses null objects as place holders. For example, when the programmer instructs PAL to create
an array object, PAL fills the array object with null objects. The null objects act as place holders
until the programmer replaces them with other objects.

3.2. Composite Objects
In addition to simple objects, PAL supports three types of composite objects — arrays, diction-
aries, and procedures.

Composite objects group together collections of other objects. A composite object may contain any
combination of simple objects as well as other composite objects. One composite object may
contain numerous other composite objects, which in turn contain numerous other composite ob-
jects, which in turn contain numerous other composite objects. PAL does not impose any limitation
on the complexity of combinations which the programmer can create.

3.2.1. Array Objects
Array objects simply contain a list of other objects. Unlike most other programming languages,
array objects may contain any combination of object types. For example, an array might contain a
couple integer objects, four other array objects, six dictionary objects, three string objects, four
name objects, and six procedure objects.

PAL provides three operations for creating array objects. The first operator, array, creates an array
containing all null objects. This allows the programmer to create an array and place the data into it
at a future time. The PAL sequence "24 array" creates an array containing 24 null objects.

The other two PAL operators, "[" and "]," work as a team to create an array containing a desired
collection of objects. The first operator of the pair, "[," starts the array definition. The "[" operator
does nothing more than place a mark object onto the operand stack. In fact, PAL does not care
whether the programmer uses the "[" operator or the predefined name mark to place the mark
object onto the stack. However, using the "[" operator makes PAL sequences much easier for
humans to read.

16 PAL Language Reference

Unlike most other programming languages, PAL does not treat the "[" and "]" operators as special
language syntax symbols. PAL does not treat the operators and data it encounters between the "["
and "]" operator any different than if it had not encountered the "[" operator. In fact, once PAL
places the mark object onto the stack in response to the "[" operator, PAL totally forgets that it
ever saw the "[" operator.

PAL creates the array object in response to encountering the "]" operator. PAL creates the array
from all the objects located on the operand stack above the top-most mark object. Normally, the
top-most mark object will result from the previous "[" operator.

Therefore, the programmer need only push all the objects for the array onto the operand stack
following the mark object pushed by the "[" operator. PAL does not care how the programmer
pushes the objects onto the stack. In the most simple case, the programmer may simply list all the
objects. PAL will push the objects onto the stack as part of PAL's normal duties. In a more
complex case, the programmer may execute any combination of procedures and PAL operators to
generate the data for the array.

For example, the following simple PAL sequence creates an array containing the integer object
123, the string object "hello," and the literal name object "MyName."

[123 (hello) /MyName]

PAL treats this sequence in a very straight-forward manner. When PAL encounters the "["
operator, it pushes a mark object onto the operand stack. PAL then encounters the integer object
"123" and pushes it onto the stack. Next PAL encounters the string object "(hello)" and pushes it
onto the stack. After the string, PAL encounters the literal name object "/MyName" and pushes it
onto the stack.

Finally, PAL encounters the "]" operator. This instructs PAL to create an array object from all of
the objects on the stack above the top-most mark object. As a result, PAL creates an array
containing the integer, string, and name objects. PAL then removes the objects, as well as the mark
object, from the operand stack and places the array object onto the stack.

The following diagram shows the organization of the above array within the printer's memory.

Index Object
0 123
1 (hello)
2 /MyName

Like string and name objects, array objects actually consist of two parts — the object part and the
value part. The array object itself contains only a reference to the array data (value). Therefore,
when the programmer instructs PAL to duplicate an array object, PAL only creates a new reference
to the array data. PAL does not duplicate the data itself. This conserves memory and allows the
programmer to manipulate the array data in various ways.

The programmer may access the individual objects within the array by specifying the index of the
object. The first object in the array has an index of zero, the next object has an index of one, with
the indexes continuing through N-1, where N represents the number of objects in the array.
Therefore, an array has the following general appearance.

[obj0 obj1 obj2 obj3 ... objN-1]

Objects 17

3.2.2. Dictionary Objects
The programmer creates dictionary objects in the exact same manner as arrays. Except, dictionary
objects use the "<<" and ">>" operators. The "<<" operator serves the exact same purpose as the
"[" operator and mark predefined name. When PAL encounters the "<<" operator, PAL simply
pushes a mark object onto the stack.

Later, when PAL encounters the ">>" operator, PAL builds a dictionary object from all the objects
on the stack above the top-most mark object. Between the "<<" and ">>" operators, the
programmer may perform any combination of operations necessary to place the desired dictionary
data onto the stack.

PAL organizes the entries within a dictionary into pairs. PAL treats the first object of each pair as a
key, and the second object as the value associated with the key. Therefore, the programmer must
always specify an even number of objects when creating an array.

When pushing dictionary objects onto the operand stack when creating a dictionary, the pro-
grammer must first push the key object of each pair followed by the value object. Therefore, a
dictionary has the following general appearance.

<<key0 value0 key1 value1 key2 value2 key3 value3 ... keyN-1 valueN-1>>

Dictionaries allow the programmer to access a particular value object by specifying the key object
associated with the value. This provides a very powerful mechanism for organizing data.

Like array objects, PAL allows dictionary objects to contain any arbitrary combination of object
types. Although PAL allows key objects of any type, PAL can search a dictionary for numeric and
name key objects more effeciently than any other type of object. Therefore, the programmer should
seriously consider using only numeric or name objects as key entries within a dictionary.

In order to take advantage of the more efficient name object searching, PAL automatically
converts string objects specified as keys to name objects. PAL does not convert string objects
specified as value entries within a dictionary. As a result, the following two dictionary definitions
result in exactly the same dictionary within the printer's memory.

<<123 (1stValue) /2ndKey /2ndData 45.76 /3rdData (4thKey) 95.11>>
<<123 (1stValue) /2ndKey /2ndData 45.76 /3rdData /4thKey 95.11>>

The following table shows the organization of this dictionary within the printer's memory.

Key Value
123 (1stValue)

/2ndKey /2ndData
45.76 /3rdData

/4thKey 95.11

3.2.3. Procedure Objects
Procedure objects contain a series of objects which the programmer can instruct PAL to execute at
a future time. PAL provides the "{" and "}" operators for defining procedures. These operators do
not work like the "[," "]," "<<," and ">>" operators. Instead, the "{" operator instructs PAL to
begin recording the following PAL operations and objects into a procedure object. The "}"
operator instructs PAL to stop recording.

18 PAL Language Reference

PAL also allows nested procedure definitions. This means that one procedure definition, enclosed
in the "{" and "}" operators, can contain another procedure, enclosed in its own set of "{" and "}"
operators.

While PAL records the operators and objects contained within the "{" and "}" operators, PAL does
not perform any of the operations for the operators it encounters. One exception to this rule exists.
PAL does continue to substitute immediately evaluated names with their associated objects.

Once PAL encounters the closing "}" operator and stops recording the procedure, PAL places the
procedure object on the top of the operand stack. PAL does not attempt to execute the procedure at
that time.

The programmer can treat a procedure object in many of the same ways as the programmer can
treat array or dictionary objects. This includes the ability to store procedure objects within other
composite objects. Except for allowing the programmer to execute the procedure when desired,
PAL treats procedures as any other data objects.

As an example of this flexibility, consider a case where the programmer wishes to print thermal
labels for various different parts within a company's inventory. Each part requires a label with
different information and a different overall layout.

The programmer could create, within the printer's memory, a dictionary containing all the part
numbers for each of the parts in the company's inventory. The programmer could then associated a
procedure with each of these part numbers within the dictionary.

When the programmer wishes to print a label for a particular part, the programmer need only tell
PAL which dictionary and part number to use and PAL will recall the procedure for printing that
label from the dictionary.

If the process requires additional information about the part, the dictionary could contain array
objects associated with each part number rather than procedures. These arrays could contain all the
information related to the part as well as the procedure for printing the part's label.

3.3. Internal Objects
Certain operations cause PAL to mix internal object types with the objects created by the pro-
grammer. The internal classification of object types includes the following.

Intrinsic Operator
File
Font

3.3.1. Intrinsic Operator Objects
Intrinsic operator objects actually instruct the PAL interpreter to perform one of the numerous
operations supported by PAL. The PAL interpreter contains a special dictionary, called
systemdict, which associates name objects with intrinsic operator objects.

When PAL encounters an executable name, PAL searches for the name in systemdict. When PAL
locates the name, it recovers the object associated with the name in the dictionary. In most cases,
PAL will find an intrinsic operator object associated with the name. PAL then performs the action
indicated by the instrinsic operator.

Objects 19

Therefore, systemdict establishes the association between a particular name and an intrinsic op-
eration. PAL allows the programmer to supercede the associations in this dictionary. As a result,
unlike other programming languages, PAL does not really treat the default names associated with
each operation as reserved words. However, changing the definition of PAL's standard names only
serves to make the programmer's PAL code harder to understand.

3.3.2. File Objects
The PAL language supports the concept of a data file. However, the location and naming of data
files can vary from one PAL printer to the next. Typically, files may reside either in the printer’s
flash memory or in flash provided in the optional RTC card..

A file can also represent some input/output device available on the printer. As an example, the
programmer can create a PAL program which reads data from the same host interface supplying
commands to the PAL interpreter.

In order to keep track of the various information related to accessing of files, PAL creates a file
object when the programmer opens a file. PAL then places this file object on the operand stack.
The programmer can then save this object in order to access the file at a later time. Whenever the
programmer wishes to access the file, the programmer places the file object back onto the stack
and sends PAL the operator associated with the desired file access.

The file object references data private to the PAL interpreter. The interpreter does not allow the
PAL programmer direct access to this information. However, PAL does provide operators which
allow the programmer to indirectly access some of the file object information.

3.3.3. Font Objects
Each PAL printer contains a set of predefined fonts for drawing characters. Each font has a
dictionary which defines all of the characteristics of that font.

Normally, a PAL programmer can view this dictionary as the font itself. The PAL operators which
work with fonts accept this dictionary as an indication of which font to manipulate.

A font dictionary has the exact same structure as any other PAL dictionary. Therefore, the
programmer may freely access the entries within any font dictionary. However, only the most ex-
perienced PAL programmers should even consider altering the contents of a font dictionary.

4. Operators
This section uses a consistent set of notation rules to summarize the operation of the numerous
operators available under the PAL language. The operator usage summary lines show the operator
written in a monospaced bold font. For easier reading, this manual also uses a sans-serif
upright font for operators listed within the main text.

The list of objects which the operator expects to find on the operand stack appear to the left of the
operator. The list of objects which the operator leaves on the operand stack appear to the right of
the operator.

The text refers to the objects which the operator expects to find on the stack as the operator's pa-
rameters. The text refers to the objects which the operator leaves on the stack as the operator's re-
sults.

The operator usage summary lines use tokens to represent the positions of each parameter or result
object. The text shows tokens in a sans-serif italic font.

The usage summary lines may enclose some parameters in square brackets — "[" and "]". Square
brackets enclose optional parameters which the programmer may omit when not required. Usage
summary lines may also use an abbreviated ellipse ("..") to indicate a range of parameters.

The name of every token shown includes a suffix which indicates the object type for the parameter
or result. The following table lists the suffixes and their associated object types.

Suffix Object Type
Any Any
Array Array
Bool Boolean
Dict Dictionary
File File
Int Integer
Mark Mark
Name Name
Null Null
Num Fixed-Point or Integer
Proc Procedure
Str String
Text Name or String

22 PAL Language Reference

4.1. Alphabetical Summary
Any ==

<<...>> Dict
[...] Array

AnyNum abs AbsNum
Any1Num Any2Num add SumNum
Any1Bool Any2Bool and AndBool

Any1Int Any2I|nt and AndInt
ElementsInt array NullArray

DataAny [CtrlDict] FormatName _barcode
AnyDict begin

AnyProc bind BoundProc
AnyInt ShiftInt bitshift ShiftedInt

AnyNum ceiling CeilingNum
NAny..1Any clear

cleartomark
closepath

LeadStr TrailStr concat ConcatStr
NAny..1Any NInt copy NAny..1Any NAny..1Any

1Array 2Array copy 2Array
1Dict 2Dict copy 2Dict

1Str 2Str copy 2Str
NAny..1Any count NAny..1Any NInt

Mark NAny..1Any counttomark Mark NAny..1Any NInt
currentdict CurDict
currentgray LevelFxp
currentpoint XNum YNum

ValNum DummyStr cvs DecStr
LiteralFile cvx ExecFile

LiteralName cvx ExecName
KeyName DataAny def
NameText FontDict definefont FontDict

FileStr AccessStr _devicefile OpenFile
PairsInt dict EmptyDict

DividendNum DivisorNum div QuotientFxp
BBoxArray dspclear

ColumnNum LineNum dspmovecursor
ColumnNum LineNum dspmoveto

ControlDict dspsetcursor
AnyStr dspstring

Any dup Any Any
end

1Any 2Any eq Bool
erasepage

1Any 2Any exch 2Any 1Any
Any exec

execexit
FormDict execform

executive
exit

FileStr AccessStr file OpenFile
OpenFile fileposition PositionInt

FontName findfont FontDict
AnyNum floor FloorNum

BgnNum IncNum EndNum AnyProc for
Any1Num Any2Num ge Bool
Any1Text Any2Text ge Bool

AnyArray IndexInt get ElementAny
AnyDict KeyAny get ValueAny
AnyStr IndexInt get CharInt

AnyArray IndexInt LengthInt getinterval SubArray

Operators 23

AnyStr IndexInt LengthInt getinterval SubStr
globaldict GlobalDict

Any1Num Any2Num gt Bool
Any1Text Any2Text gt Bool

DividendInt DivisorInt idiv QuotientInt
AnyBool TrueProc if

AnyBool TrueProc FalseProc ifelse
WNum HNum PolBool TmArray SrcProc imagemask

Any1Bool Any2Bool _imp ImpBool
Any1Int Any2Int _imp ImpInt

NAny..0Any IndexInt index NAny..0Any IndexedAny
initgraphics
initmatrix

AnyDict KeyAny known Bool
Any1Num Any2Num le Bool
Any1Text Any2Text le Bool

AnyArray length ElementsInt
AnyDict length PairsInt
AnyStr length CharsInt

XNum YNum lineto
_localtime TimeArray

AnyProc loop
Any1Num Any2Num lt Bool
Any1Text Any2Text lt Bool

AnyStr SetStr _ltrim TrimmedStr
AnyFontDict TmArray makefont TmFontDict

mark mark
LimitsArray PagesInt _measurepage SizeArray
DividendInt DivisorInt mod RemainderInt

XNum YNum moveto
Any1Num Any2Num mul ProductNum

1Any 2Any ne Bool
AnyNum neg NegNum

newpath
AnyBool not NotBool
AnyNum not NotNum

null Null
Any1Bool Any2Bool or OrBool

Any1Int Any2Int or OrInt
ScoreSrr _play

Any pop
AnyStr print

AnyArray IndexInt ElementAny put
AnyDict KeyAny ValueAny put

AnyStr IndexInt CharInt put
TargetArray IndexInt SourceArray put

TargetStr IndexInt SourceStr put
AnyArray IndexInt SubArray putinterval

AnyStr IndexInt SubStr putinterval
quit

OpenFile AnyStr readstring ReadStr
CountInt AnyProc repeat

XDeltaNum YDeltaNum rlineto
XDeltaNum YDeltaNum rmoveto

AngleNum rotate
AnyNum round RoundedNum

AnyStr SetStr _rtrim TrimmedStr
XScaleNum YScaleNum scale
AnyFontDict ScaleNum scalefont ScaledFontDict

AnyStr SearchStr search PostStr MatchStr PreStr true
AnyStr SearchStr search AnyStr false

OpenFile PositionInt setfileposition
ScaledFontDict setfont

LevelNum setgray
CapInt setlinecap

24 PAL Language Reference

WidthNum setlinewidth
TimeArray _setlocaltime

ControlDict setpagedevice
ShowStr show

showpage
PagesNum _showpages

CharsInt string NullStr
AnyStr stringwidth XDeltaNum YDeltaNum

stroke
Any1Num Any2Num sub DifNum

XTransNum YTransNum translate
trap

AnyNum truncate TruncatedNum
AnyDict KeyAny undef

userdict userdict
vmstatus BytesInt

OpenFile AnyStr writestring
Any1Bool Any2Bool xor XorBool

Any1Int Any2Int xor XorInt

25 ==

==
Description

Writes the PAL language format of any object to %stdout.

Usage

Any ==

Any Any object type. Object which interpreter will write to %stdout.

Comments

If the stack contains a composite object, the interpreter will also write all objects which comprise
the composite object. Writing of composite objects will continue through all nesting levels.

Some objects which can reside in memory do not have corresponding PAL language represen-
tations. For example, the programmer cannot include intrinsic operator objects and file objects
directly within PAL source code.

Initially, intrinsic operator objects only exist within the system dictionary. The programmer ac-
cesses these intrinsic operator objects by referencing them using the key names associated with
them in the system dictionary. File objects only result from the opening of a file.

In cases where a object does not have a PAL language representation, the interpreter writes the
object using two hyphens ("--") before and after a text description of the object. For intrinsic
operator objects, the interpreter uses the same text as the name associated with the object in the
system dictionary. For example, the system dictionary contains the literal name add associated
with the intrinsic operator object for the add operation. Therefore, the interpreter writes the in-
trinsic operator object for the add operation as "--add--".

The interpreter provides the == operator primarily for debugging purposes. However, the operator
can also prove useful for uploading data to a host computer provided the host system programs can
accept the data in PAL format.

<<...>> 26

<<...>>
Description

Operator pair used to define a dictionary data object.

Usage

<<...>> Dict

Dict Dictionary. Object defined by operator pair.

Comments

In other programming languages, the language would treat symbols like these as syntactical in
nature as opposed to executable. However, under PAL, the PAL interpreter executes these symbols
in the same manner as add or any other PAL operator.

The PAL interpreter executes the opening ("<<") and closing (">>") symbols as completely
independent operators. The opening operator does nothing more than push a mark object onto the
operand stack. The closing operator instructs the PAL interpreter to build a dictionary object from
all objects on the top of the operand stack down to, but not including, the top most mark object.
After PAL removes all the objects from the stack and places them into the new dictionary, it
discards the mark object from the top of the stack.

The programmer must supply pairs of objects between the opening and closing symbols. In other
words, an even number of objects should appear between the "<<" and ">>" symbols.

The PAL interpreter uses the first object of each pair as the key under which to store the second
object within the dictionary. For example, the following sequence creates a dictionary with two
entries. Each entry consists of a key and an associated value.

<< /Key1 (data1) 12 [78 95] >>

The first dictionary entry created will contain the string (data1) under the literal name key /Key1.
The second entry created will contain the array of two numbers [78 95] under the numeric key 12.

The reader should note that PAL dictionaries may contain mixed types of keys and values. This
provides maximum flexibility for the PAL programmer. However, certain data types make for
more efficient search keys than other data types. For example, when later instructed to do so, the
PAL interpreter can locate a literal name or numeric key entry faster than an array or other type of
key.

Since the interpreter can locate a literal name faster than a string, the interpreter automatically
converts strings used as keys to literal names before storing them into the dictionary. The inter-
preter only performs this conversion for key entries within the dictionary. The interpreter does not
convert a string placed into a dictionary as a value object associated with a key object. For ex-
ample, the following two dictionary definitions will result in exactly the same dictionary once the
interpreter converts the key strings in the first definition.

<< (Key1) (data1) (Key2) /data2 >>
<< /Key1 (data1) /Key2 /data2 >>

27 <<...>>

Once the interpreter has created the dictionary, it pushes the dictionary object onto the top of the
operand stack.

Hints

PAL dictionaries function in the same manner as key indexed data files. Using a dictionary, a
programmer can create a file of key accessed data records directly within the PAL printer's
memory. By associating an array with each key entry within the dictionary, the programmer can
recall an entire record of data simply by supplying the key associated with the array. The array can
contain all the data items for each record.

[...] 28

[...]
Description

Operator pair used to define an array object.

Usage

[...] Array

Array Array. Object defined by operator pair.

Comments

In other programming languages, the language would treat symbols like these as syntactical in
nature as opposed to executable. However, under PAL, the PAL interpreter executes these symbols
in the same manner as add or any other PAL operator.

The PAL interpreter executes the opening ("[") and closing ("]") symbols as completely inde-
pendent operators. The opening operator does nothing more than push a mark object onto the
operand stack. The closing operator instructs the PAL interpreter to build an array object from all
objects on the top of the operand stack down to, but not including, the top most mark object. After
PAL removes all the objects from the stack and places them into the new array, it discards the
mark object from the top of the stack.

Unlike many other programming languages, PAL arrays may contain mixed data types. These data
types can include dictionaries, other arrays, and other composite data types. The following
example creates an array containing four entries.

[(hello) [1 2 3] <</MyKey (me) /YourKey (you)>> /LitName]

The example specifies the string (hello) as the first array entry, the three element array [1 2 3] as
the second entry, the two entry dictionary <</MyKey (me) /YourKey (you)>> as the third entry,
and the literal name /LitName as the fourth entry.

Once the interpreter has created the array, it pushes the array object onto the top of the operand
stack.

Hints

PAL arrays can function in the same manner as random access data files. Using an array, a
programmer can create a file of data records directly within the PAL printer's memory. By creating
an array containing arrays, the programmer can recall an entire record of data simply by supplying
the index of the minor array record within the major array file. The minor array record can contain
all the data items for each record.

29 abs

abs
Description

Returns the absolute value of any number.

Usage

AnyNum abs AbsNum

AnyNum Integer or fixed-point. Number from which to return absolute value.

AbsNum Integer or fixed-point. Absolute value of AnyNum. Same object type as
AnyNum.

Comments

The abs operator pops the top object from operand stack, calculates the object's absolute value,
and pushes the result onto the operand stack. The result's type will match the original value's type.

add 30

add
Description

Adds two numbers and returns the sum.

Usage

Any1Num Any2Num add SumNum

Any1Num Integer or fixed-point. First number to add.

Any2Num Integer or fixed-point. Second number to add.

SumNum Integer or fixed-point. Integer if Any1Num and Any2Num are both integer,
otherwise fixed-point. Sum of Any1Num and Any2Num.

Comments

The add operator pops the top two objects from operand stack, adds them together, and pushes the
result back onto the operand stack. The interpreter must find two numeric objects on the top of the
stack or a typecheck error will result.

If the stack contains two integer objects, the interpreter will perform integer addition and push an
integer result onto the stack. The interpreter will perform fixed point addition and push a fixed-
point result if the stack contains a fixed-point object as either operand.

31 and

and
Description

Performs a logical or bit-wise and operation on two boolean or integer values.

Usage

Any1Bool Any2Bool and AndBool
Any1Int Any2Int and AndInt

Any1Bool Boolean. First operand for the logical and operation.

Any2Bool Boolean. Second operator for the logical and operation.

AndBool Boolean. Result of the logical and operation.

Any1Int Integer. First operand for the bit-wise and operation.

Any2Int Integer. Second operand for the bit-wise and operation.

AndInt Integer. Result of the bit-wise and operation.

Comments

The following table lists the results of performing the logical and operation on two boolean values.

Any1Bool
false true

Any2Bool false false false
true false true

The following table lists the results for each bit position when performing the bit-wise and op-
eration on two integer values.

Any1Int
0 1

Any2Int 0 0 0
1 0 1

array 32

array
Description

Creates an array entirely consisting of null objects.

Usage

ElementsInt array NullArray

ElementsInt Integer. Number of elements to include within array.

NullArray Array. Array containing ElementsInt null objects.

Comments

The array and [...] operators perform similar functions. However, the [...] operators require the
programmer to supply initialization data for a new array. The array operator does not require in-
itialization data. The array operator automatically initializes the array with null objects. This
provides a simplified means for programmers to create arrays which will receive their data at a
later time.

33 _barcode

_barcode
Description

Draws a bar code in a specified format.

Usage

DataStr [CtrlDict] FormatName _barcode

DataStr String. This is the data to be encoded in the bar code. See bar code specific dis-
cussions below for data requirements for each bar code format. See appendix A.,
Bar Code Considerations for a description of the capabilities, limitations, and
special rules for PAL bar codes.

CtrlDict Optional dictionary. Contains entries which provide additional control over the
formatting of the bar code drawn. The usage of each entry varies with the bar
code format. See comments and format specific discussions for additional de-
tails.

Each dictionary entry has a full name and an abbreviation. Some also have ali-
ases and abbreviations for the aliases. These abbreviations and aliases are pro-
vided to simplify the programming task. All variations on an entry name may be
used interchangeably.

FormatName Literal name. Name of bar code format to draw. See discussions of each format
for specific names.

Comments

The DataStr operand provides the data from which the PAL interpreter will build the bar code
pattern. The contents of the string depends upon the bar code format specified by the Format-
Name parameter. Some formats may accept data objects of more than one type. The text below
discusses the individual bar code formats.

The FormatName parameter specifies the format of the bar code to draw. The _barcode operator
requires a literal name for the FormatName parameter. The text below gives a list of the bar code
formats supported by PAL. The number and combination of bar code formats on a given PAL
printer may vary. The reader should check the documentation for each printer model to determine
the bar code formats supported by the printer. See appendix A., Bar Code Considerations for a
discussion of the problems that may be encountered when moving a PAL program between
different PAL printer models.

_barcode: Code 128 34

_barcode: Code 128
DataStr [CtrlDict] /Code128 _barcode

This symbology conforms to the USS-128 specification.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/CheckDigit
/CD

Boolean. true instructs PAL to calculate the check digit and
insert it into the data string. false will instruct PAL to use the
data string without modification. Default value = true.

/Height
/H

Integer or fixed-point. Specifies the height of the bars. This
value should be at least 0.25 inches (6.35 mm) or 15% of the bar
code symbol length, whichever is greater. Note that this is the
height of only the bars and does not include the human readable
text, if any. The resulting overall bar code image may be taller
than Height. Default value = 36.0 (0.5" / 12.7 mm with default
CTM).

/HRAbove
/HRA

Boolean. true instructs PAL to place the human readable text
above the bar code. false instructs PAL to place the human
readable text below the bar code. If HRShow is false, this entry
is ignored. Default value = false.

/HRShow
/HR

Boolean. true instructs PAL to automatically print the human
readable text along with the bar code. false instructs PAL not to
include the human readable. Default value = true.

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars drawn as part of the bar code. This is
generally referred to as the X dimension. Default value = 0.72
(1/100" / 0.254 mm with default CTM).

/UCC128
/EAN128
/U128
/E128

Boolean. true instructs PAL to use UCC-128/EAN-128 format.
false instructs PAL to use Code-128. Default setting = false.

Usage Notes

Code 128 has three different code sets designated Code A, Code B, Code C. These code sets pro-
vide different mappings of the 106 available Code 128 symbols to ASCII. These mappings, along
with the PAL strings that generates the symbols, are shown in the table below. Code A provides
most symbols, the capital letters, and ASCII control characters. Code B provides the complete
ASCII symbol set, but no control characters. Code C provides a very dense packing of numeric
strings. Two decimal digits are packed into one Code 128 symbol.

The generation of Code 128 bar codes is controlled by several special control characters included
in the Code 128 set. PAL is instructed to generate these special characters with a two-character

35 _barcode: Code 128

string beginning with a tilde (~). To get the character tilde, two tildes (~~) are used. These charac-
ters are shown in the following table.

Three characters, \ (and), require special handling in PAL. The backslash character, \, is an es-
cape character for encoding special characters in PAL strings. To get the backslash character itself,
you must use a double backslash (\\). The parenthesis characters are used in PAL to indicate the
beginning and ending of a string. To include these characters in a string, they must be proceeded
by a backslash (i.e., \(and \)).

Code C values are specified as a string of ASCII numerals. Since the Code 128 symbols are made
up of pairs of numerals, there must be an even number of numerals in the string. If PAL encounters
a non-numeral while building a Code C bar code, the string will be rejected with a rangecheck
error.

For Code A and Code B, the character used for a Code 128 symbol is usually the matching ASCII
character. Since there could be a problem getting some of the ASCII control characters in Code A
through some communication systems (not to mention PAL itself), these Code A characters are
requested by using the equivalent character from Code B (e.g. for ACK, use (f)). See the table be-
low for a complete list of all the PAL strings needed to produce Code 128 symbols. Any inap-
propriate ASCII character in the data string will cause the string to be rejected with a rangecheck
error.

A Code 128 bar code must start with a start code indicating the code to be used. If the data string
does not begin with one of the three start codes (~a, ~b, or ~c), a start code for Code B is supplied
by PAL. Code 128 allows the code to be changed within the bar code. If the code is changed, PAL
automatically begins using the rules for the new code.

_barcode: Code 128 36

Value Code
A

A
String

Code
B

B
String

Code
C

C
String

Value Code
A

A
String

Code
B

B
String

Code
C

C
String

0 SP () SP () 00 (00) 54 V (V) V (V) 54 (54)
1 ! (!) ! (!) 01 (01) 55 W (W) W (W) 55 (55)
2 " (") " (") 02 (02) 56 X (X) X (X) 56 (56)
3 # (#) # (#) 03 (03) 57 Y (Y) Y (Y) 57 (57)
4 $ ($) $ ($) 04 (04) 58 Z (Z) Z (Z) 58 (58)
5 % (%) % (%) 05 (05) 59 [([) [([) 59 (59)
6 & (&) & (&) 06 (06) 60 \ (\\) \ (\\) 60 (60)
7 ' (') ' (') 07 (07) 61] (])] (]) 61 (61)
8 ((\() ((\() 08 (08) 62 ^ (^) ^ (^) 62 (62)
9) (\))) (\)) 09 (09) 63 _ (_) _ (_) 63 (63)
10 * (*) * (*) 10 (10) 64 NUL (`) ` (`) 64 (64)
11 + (+) + (+) 11 (11) 65 SOH (a) a (a) 65 (65)
12 , (,) , (,) 12 (12) 66 STX (b) b (b) 66 (66)
13 - (-) - (-) 13 (13) 67 ETX (c) c (c) 67 (67)
14 . (.) . (.) 14 (14) 68 EOT (d) d (d) 68 (68)
15 / (/) / (/) 15 (15) 69 ENQ (e) e (e) 69 (69)
16 0 (0) 0 (0) 16 (16) 70 ACK (f) f (f) 70 (70)
17 1 (1) 1 (1) 17 (17) 71 BEL (g) g (g) 71 (71)
18 2 (2) 2 (2) 18 (18) 72 BS (h) h (h) 72 (72)
19 3 (3) 3 (3) 19 (19) 73 HT (i) i (i) 73 (73)
20 4 (4) 4 (4) 20 (20) 74 LF (j) j (j) 74 (74)
21 5 (5) 5 (5) 21 (21) 75 VT (k) k (k) 75 (75)
22 6 (6) 6 (6) 22 (22) 76 FF (l) l (l) 76 (76)
23 7 (7) 7 (7) 23 (23) 77 CR (m) m (m) 77 (77)
24 8 (8) 8 (8) 24 (24) 78 SO (n) n (n) 78 (78)
25 9 (9) 9 (9) 25 (25) 79 SI (o) o (o) 79 (79)
26 : (:) : (:) 26 (26) 80 DLE (p) p (p) 80 (80)
27 ; (;) ; (;) 27 (27) 81 DC1 (q) q (q) 81 (81)
28 < (<) < (<) 28 (28) 82 DC2 (r) r (r) 82 (82)
29 = (=) = (=) 29 (29) 83 DC3 (s) s (s) 83 (83)
30 > (>) > (>) 30 (30) 84 DC4 (t) t (t) 84 (84)
31 ? (?) ? (?) 31 (31) 85 NAK (u) u (u) 85 (85)
32 @ (@) @ (@) 32 (32) 86 SYN (v) v (v) 86 (86)
33 A (A) A (A) 33 (33) 87 ETB (w) w (w) 87 (87)
34 B (B) B (B) 34 (34) 88 CAN (x) x (x) 88 (88)
35 C (C) C (C) 35 (35) 89 EM (y) y (y) 89 (89)
36 D (D) D (D) 36 (36) 90 SUB (z) z (z) 90 (90)
37 E (E) E (E) 37 (37) 91 ESC ({) { ({) 91 (91)
38 F (F) F (F) 38 (38) 92 FS (|) | (|) 92 (92)
39 G (G) G (G) 39 (39) 93 GS (}) } (}) 93 (93)
40 H (H) H (H) 40 (40) 94 RS (~~) ~ (~~) 94 (94)
41 I (I) I (I) 41 (41) 95 US (DEL) DEL (DEL) 95 (95)
42 J (J) J (J) 42 (42) 96 FNC3 (~3) FNC3 (~3) 96 (96)
43 K (K) K (K) 43 (43) 97 FNC2 (~2) FNC2 (~2) 97 (97)
44 L (L) L (L) 44 (44) 98 SHFT (~S) SHFT (~S) 98 (98)
45 M (M) M (M) 45 (45) 99 CodC (~C) CodC (~C) 99 (99)
46 N (N) N (N) 46 (46) 100 CodB (~B) FNC4 (~4) CodB (~B)
47 O (O) O (O) 47 (47) 101 FNC4 (~4) CodA (~A) CodA (~A)
48 P (P) P (P) 48 (48) 102 FNC1 (~1) FNC1 (~1) FNC1 (~1)
49 Q (Q) Q (Q) 49 (49)
50 R (R) R (R) 50 (50) 103 Start CODE A (~a)
51 S (S) S (S) 51 (51) 104 Start CODE B (~b)
52 T (T) T (T) 52 (52) 105 Start CODE C (~c)
53 U (U) U (U) 53 (53)

If the UCC128 or EAN128 flags are true, the symbol is to be used as part of the UCC or EAN
system as a supplemental code. Both systems use the same format. A UCC-128 symbol is a stan-
dard Code 128 symbol that begins with one of the start characters immediately followed by an
FNC1 character. FNC1 has been reserved to exclusively indicate a UCC 128/EAN 128 symbol.
The remainder of the characters are fairly free-form. The first two characters are usually numeric
and indicate the format of the remainder of the symbol. These remaining characters may be
alphabetic and/or numeric characters and may be any length up to 30 characters. When PAL is
requested to build a symbol in this format, it checks that the character after the start code is FNC1.
If it is not, an FNC1 is inserted.

37 _barcode: Code 128

The generated image includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following example generates 0.5 inch tall Code 128 bar code with 0.01 inch narrow bars and
no human readable. The data string begins with Code B, switches to Code C for the numbers, and
ends up in Code A with an ASCII control character (ETX).

(~bCode 128 ~C12345678~Ac) <</HRShow false>> /Code128
_barcode

_barcode: Code 39 38

_barcode: Code 39
DataStr [CtrlDict] /Code39 _barcode

This symbology conforms to the USS-39 specification.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/CheckDigit
/CD

Boolean. true instructs PAL to automatically calculate the check
digit and insert it at the end of the data string just before the stop
character. false instructs PAL to use the data string without
modification. A computed check digit will also be displayed in
the human readable text. Default value = false.

/Height
/H

Integer or fixed-point. Specifies the height, in current user units,
of the bar code. This value should be at least 0.25 inches (6.35
mm) or 15% of the bar code symbol length, whichever is
greater. Note that this is the height of the bars and does not
include the human readable text, if any. The resulting overall bar
code image may be taller than Height. Default value = 36.0
(0.5" / 12.7 mm with default CTM).

/HRAbove
/HRA

Boolean. true instructs PAL to print the human readable above
the bar code. false instructs PAL to print the human readable
below the bar code. If HRShow is false, this entry is ignored.
Default value = false.

/HRShow
/HR

Boolean. true instructs the PAL to draw the human readable text
along with the bar code. false instructs PAL to not draw the
human readable text. Default value = true.

/HRShowStartStop
/SS

Boolean. true instructs PAL to include the start and stop
characters (*) when drawing the human readable text. false
instructs PAL to not include the start and stop characters as part
of the human readable. Although the specification suggests these
characters not to be printed, traditionally they are printed. For
that reason, the default is set to print them. If HRShow is false,
this entry is ignored. Default value = true.

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars drawn as part of the bar code. This is
generally referred to as the X dimension. Default value = 0.72
(1/100" / 0.254 mm with default CTM).

/WideRatio
/Ratio
/WR
/R

Integer or fixed-point. Specifies the ratio of the wide bars to the
narrow bars. The value is a multiplier which PAL applies to the
narrow bar width in order to establish the width of the wide bars.
Default value = 3.0.

39 _barcode: Code 39

Character Set

Valid characters for Code 39 bar codes are the digits 0 through 9, the capital letters A through Z, a
space, and the characters - . $ / + % and *. Any other characters will cause the string to be rejected
with a rangecheck error.

Extended Character Set

Code 39 supports a scheme for encoding the full ASCII character set. By combining the characters
$ + % and / with valid Code 39 characters as shown in the following table, all ASCII characters
may be encoded.

Usage Notes

The start and stop characters (*) need not be specified. If they are omitted, PAL will supply them.

The generated image includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following example generates 0.5 inch tall Code 39 bar code with 0.01 inch narrow bars and a
ratio of 2.5:1. A check digit will be calculated and start/stop characters will be displayed.

ASCII PAL
String

ASCII PAL
String

ASCII PAL
String

ASCII PAL
String

NUL (%U) SP () @ (%V) ` (%W)
SOH ($A) ! (/A) A (A) a (+A)
STX ($B) " (/B) B (B) b (+B)
ETX ($C) # (/C) C (C) c (+C)
EOT ($D) $ (/D) D (D) d (+D)
ENQ ($E) % (/E) E (E) e (+E)
ACK ($F) & (/F) F (F) f (+F)
BEL ($G) ' (/G) G (G) g (+G)
BS ($H) ((/H) H (H) h (+H)
HT ($I)) (/I) I (I) i (+I)
LF ($J) * (/J) J (J) j (+J)
VT ($K) + (/K) K (K) k (+K)
FF ($L) , (/L) L (L) l (+L)
CR ($M) - - M (M) m (+M)
SO ($N) . . N (N) n (+N)
SI ($O) / (/O) O (O) o (+O)

DLE ($P) 0 0 P (P) p (+P)
DC1 ($Q) 1 1 Q (Q) q (+Q)
DC2 ($R) 2 2 R (R) r (+R)
DC3 ($S) 3 3 S (S) s (+S)
DC4 ($T) 4 4 T (T) t (+T)
NAK ($U) 5 5 U (U) u (+U)
SYN ($V) 6 6 V (V) v (+V)
ETB ($W) 7 7 W (W) w (+W)
CAN ($X) 8 8 X (X) x (+X)
EM ($Y) 9 9 Y (Y) y (+Y)

SUB ($Z) : (/Z) Z (Z) z (+Z)
ESC (%A) ; (%F) [(%K) { (%P)
FS (%B) < (%G) \ (%L) | (%Q)
GS (%C) = (%H)] (%M) } (%R)
RS (%D) > (%I) ^ (%N) (%S)
US (%E) ? (%J) _ (%O) DEL (%T)

_barcode: Code 39 40

(BAR CODE 39) <</WideRatio 2.5 /CheckDigit true>> /Code39
_barcode

41 _barcode: Code 93

_barcode: Code 93
DataStr [CtrlDict] /Code93 _barcode

This symbology conforms to the USS-93 specification.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/Height
/H

Integer or fixed-point. Specifies the height, in current user
coordinates, of the bar code. This value should be at least 0.25
inches (6.35 mm) or 15% of the bar code symbol length,
whichever is greater. Note that this is the height of the bars and
does not include the human readable text, if any. The resulting
overall bar code image may be taller than Height. Default value
= 36.0 (0.5" / 12.7 mm with default CTM).

/HRAbove
/HRA

Boolean. true instructs PAL to draw the human readable text
above the bar code. false instructs PAL to draw the human
readable text below the bar code. If HRShow is false, this entry
is ignored. Default value = false.

/HRShow
/HR

Boolean. true instructs PAL to draw the human readable text
along with the bar code. false instructs PAL to not draw the
human readable text. Default value = true.

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars. This is generally referred to as the X
dimension. Default value = 0.72 (1/100" / 0.254 mm with
default CTM).

Character Set

Valid characters for Code 93 bar codes are the digits 0 through 9, the capital letters A through Z, a
space, and the characters - . $ / + and %. Four special characters, [$] [%] [/] and [+], are also sup-
ported. To send these special characters, precede the character with ~. Thus, to specify [$], send
~$. Any other characters will cause the string to be rejected with a rangecheck error.

Extended Character Set

Code 93 supports a scheme for encoding the full ASCII character set. By combining special
characters with valid Code 93 characters as shown in the following table, all ASCII characters may
be encoded.

_barcode: Code 93 42

Usage Notes

Code 93 symbols have two check digits. The interpreter generates them automatically and they
should not be included in the input string. The interpreter also automatically inserts start and stop
characters.

The generated image includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following example generates 1.0 inch tall Code 93 bar code with 0.01 inch wide narrow bars.

(BAR CODE 93) <</H 72>> /Code93 _barcode

Codabar

DataStr [CtrlDict] /Codabar _barcode

This symbology conforms to the USS-Codabar specification. This specification is derived from
traditional Codabar and is fully compatible with it in all applications.

ASCII PAL
String

ASCII PAL
String

ASCII PAL
String

ASCII PAL
String

NUL (~%U) SP () @ (~%V) ` (~%W)
SOH (~$A) ! (~/A) A (A) a (~+A)
STX (~$B) " (~/B) B (B) b (~+B)
ETX (~$C) # (~/C) C (C) c (~+C)
EOT (~$D) $ $ D (D) d (~+D)
ENQ (~$E) % % E (E) e (~+E)
ACK (~$F) & (~/F) F (F) f (~+F)
BEL (~$G) ' (~/G) G (G) g (~+G)
BS (~$H) ((~/H) H (H) h (~+H)
HT (~$I)) (~/I) I (I) i (~+I)
LF (~$J) * (~/J) J (J) j (~+J)
VT (~$K) + + K (K) k (~+K)
FF (~$L) , (~/L) L (L) l (~+L)
CR (~$M) - - M (M) m (~+M)
SO (~$N) . . N (N) n (~+N)
SI (~$O) / / O (O) o (~+O)

DLE (~$P) 0 0 P (P) p (~+P)
DC1 (~$Q) 1 1 Q (Q) q (~+Q)
DC2 (~$R) 2 2 R (R) r (~+R)
DC3 (~$S) 3 3 S (S) s (~+S)
DC4 (~$T) 4 4 T (T) t (~+T)
NAK (~$U) 5 5 U (U) u (~+U)
SYN (~$V) 6 6 V (V) v (~+V)
ETB (~$W) 7 7 W (W) w (~+W)
CAN (~$X) 8 8 X (X) x (~+X)
EM (~$Y) 9 9 Y (Y) y (~+Y)

SUB (~$Z) : (~/Z) Z (Z) z (~+Z)
ESC (~%A) ; (~%F) [(~%K) { (~%P)
FS (~%B) < (~%G) \ (~%L) | (~%Q)
GS (~%C) = (~%H)] (~%M) } (~%R)
RS (~%D) > (~%I) ^ (~%N) ~ (~%S)
US (~%E) ? (~%J) _ (~%O) DEL (~%T)

43 _barcode: Code 93

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/CheckDigit
/CD

Boolean. No check digit is required for this symbology. If this
entry is set to true, a check digit will be calculated using the al-
gorithm suggested in the USS-Codabar specification. Default
value = false.

/Height
/H

Integer or fixed-point. Specifies the height, in current user
coordinates, of the bar code. This value should be at least 0.25
inches (6.35 mm) or 15% of the bar code symbol length,
whichever is greater. Note that this is the height of the bars and
does not include the human readable text, if any. The resulting
overall bar code image may be taller than Height. Default value
= 36.0 (0.5" / 12.7 mm with default CTM).

/HRAbove
/HRA

Boolean. true instructs PAL to draw the human readable text
above the bar code. false instructs PAL to draw the text below
the bar code. Default value = false. If HRShow is false, this
entry is ignored.

/HRShow
/HR

Boolean. true instructs PAL to draw the human readable text
along with the bar code. false instructs PAL not to draw the
human readable text. Default value = true.

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars. This is generally referred to as the X
dimension. Default value = 0.72 (1/100" / 0.254 mm with
default CTM).

Usage Notes

Valid characters for Codabar bar codes are the digits 0 through 9, the symbols - $: / . +, and the
start/stop characters A B C or D. Any other characters will cause the string to be rejected with a
rangecheck error.

Codabar symbols should start and end with one of the four start/stop characters. The use of
start/stop characters varies with the application using the bar code. For this reason, PAL does not
enforce the presence of these characters. If they are omitted, however, the resulting bar code will
probably not scan.

The generated bit map includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following example generates 0.5 inch tall Codabar bar code with 0.01 inch narrow bars and
the human readable text printed above the bar code.

(A12345678B) <</HRAbove true>> /Codabar _barcode

_barcode: EAN-8 44

_barcode: EAN-8
DataStr [CtrlDict] /EAN8 _barcode

This symbology conforms to the General EAN specification.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/CheckDigit
/CD

Boolean. true instructs PAL to automatically calculate the check
digit and insert it at the end of the data string, just before the
stop character. The check digit will also be part of the human
readable text. false instructs PAL that the data string already
contains a check digit and the string should be used without
modification. Default value = false.

/Height
/H

Integer or fixed-point. Specifies the height, in current user
coordinates, of the bar code. For this bar code symbology, this
value specifies the height of the entire bar code image including
the human readable text. Default value = 36.0 (0.5" / 12.7 mm
with default CTM).

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars drawn as part of the bar code. This is
generally referred to as the X dimension. Default value = 0.936
(0.013" / 0.33 mm with default CTM).

Usage Notes

Valid characters for EAN-8 bar codes are the digits 0 through 9. Any other characters will cause
the string to be rejected with a rangecheck error.

EAN-8 symbols require exactly 8 digits. If fewer digits are provided, the string will be padded with
leading zeros. If a check digit has been requested PAL computes the correct value and replaces the
eighth digit with the new check digit. The data string should contain a dummy character in the
eighth digit to receive the check digit. Specifying short strings causes the string to be padded with
zeros and the last character being replaced by the check digit.

The generated image includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following example generates 1.13 inch tall EAN-8 bar code with 0.113 inch narrow bars. A
check digit will be calculated.

(01234560) <</Height 72 1.13 mul /CheckDigit true>> /EAN8
_barcode

45 _barcode: EAN-13

_barcode: EAN-13
DataStr [CtrlDict] /EAN13 _barcode

This symbology conforms to the General EAN specifications.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/AddOn2
/AO2

Boolean. true instructs PAL to add a 2-digit add-on bar code to
the base bar code. false instructs PAL not to add the add-on bar
code. Default value = false.

/AddOn5
/AO5

Boolean. true instructs PAL to add a 5 digit add-on bar code to
the base bar code. false instructs PAL not to add the add-on bar
code. Default value = false.

/CheckDigit
/CD

Boolean. true instructs PAL to automatically calculate the check
digit and insert it into the data string immediately before the stop
character. The check digit will also appear as part of the human
readable. false instructs PAL that the data strings already
contains the check digit and to use the data string without
modification. Default value = false.

/Height
/H

Integer or fixed-point. Specifies the height, in current user
coordinates, of the bar code. For this bar code symbology, the
height includes the human readable text. Default value = 36.0
(0.5" / 12.7 mm with default CTM).

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars drawn as part of the bar code. This is
generally referred to as the X dimension. Default value = 0.936
(0.013" / 0.33 mm with default CTM).

/RandWt4
/RW4

Boolean. true instruct PAL to automatically calculate the
internal check digit for a four-digit random weight (or price)
field. false instructs PAL to not perform this calculation.
Default value = false.

/RandWt5
/RW5

Boolean. true instructs PAL to automatically calculate the
internal check digit for a five-digit random weight (or price)
field. Default value = false.

Usage Notes

Valid characters for EAN-13 bar codes are the digits 0 through 9. Any other characters will cause
the string to be rejected with a rangecheck error.

EAN-13 symbols require exactly 13 digits. If fewer digits are provided, the string will be padded
with leading zeros. If a check digit has been requested, PAL computes the correct value and re-
places the 13th digit with the new check digit. The data string should contain a dummy character in

_barcode: EAN-13 46

the 13th digit to receive the check digit. Specifying short strings causes the string to be padded
with zeros and the last character to be replaced by the check digit.

If the RandWt4 or the RandWt5 flags are true, the last 4 or 5 digits before the check digit con-
tain a random weight or a price. This allows in-store marking of such items as meat or cheese. A
check digit for the random weight is calculated and replaces the character immediately preceding
the 4- or 5-digit field. Since a new check digit must be calculated for the entire, symbol, the
CheckDigit flag should always be set to true when using random weight symbols.

If the AddOn2 or the AddOn5 flags are true, a 2- or 5-digit add-on bar code is added to the right
of the EAN-13 symbol. Since the check digits for these add-on bar codes are implicit in the encod-
ing, no check digit is specified for the add-on portion. To specify the text for a bar code with a
supplement, simply add 2 or 5 digits to the end of a standard 13-digit EAN-13 number. (Don't for-
get that the character before the supplement will contain the normal check digit.)

The generated image includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following example generates 1.0 inch tall EAN-13 bar code with 0.013 inch narrow bars. A
check digit will be calculated.

(0123456789010) <</Height 72 /CheckDigit true>> /EAN13
_barcode

The following example generates 1.13 inch tall EAN-13 bar code with 0.013 inch narrow bars and
a 4-digit random weight field. Both zeros in the symbol will be replaced by check digits.

(212345012340) <</Height 72 1.13 mul /RandWt4 true
/CheckDigit true>> /EAN13 _barcode

The following example generates 1.13 inch tall EAN-13 bar code with 0.013 inch narrow bars and
a 5-digit add-on bar code. Note that the 8 in the 13th position of the symbol is the check digit
check digit.

(978078211054890000) <</Height 72 1.13 mul /AddOn5 true>>
/EAN13 _barcode

47 _barcode: Interleave 2 of 5

_barcode: Interleave 2 of 5
DataStr [CtrlDict] /I2of5 _barcode

This symbology conforms to the USS-I 2/5 specification.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/CheckDigit
/CD

Boolean. true instructs PAL to automatically calculate a check
digit based on the algorithm suggested in the USS-I2/5
specification. false instructs PAL to not calculate the check
digit. Default value = false.

/Height
/H

Integer or fixed-point. Specifies the height, in current user
coordinates, of the bar code. This is the height of the bar codes
bars and does not include the human readable text, if any. The
resulting overall bar code image may be taller than Height. This
value should be at least 0.25 inches (6.35 mm) or 15% of the bar
code symbol length, whichever is greater. Default value = 36.0
(0.5" / 12.7 mm with default CTM).

/HRAbove
/HRA

Boolean. true instructs PAL to draw the human readable text
above the bar code. false instructs PAL to draw the human
readable text below the bar code. If HRShow is false, this entry
is ignored. Default value = false.

/HRShow
/HR

Boolean. true instructs PAL to draw the human readable text
along with the bar code. false instructs PAL to not draw the
human readable text. Default value = true.

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user unts,
of the narrow bars. This is generally referred to as the X
dimension. Default value = 0.72 (1/100" / 0.254 mm with
default CTM).

/WideRatio
/Ratio
/WR
/R

Integer or fixed-point. Specifies the ratio of the wide bars to the
narrow bars. The value specifies a multiplier which PAL applies
to the narrow bar width in order to establish the width of the
wide bars. Default value = 3.0.

Usage Notes

Valid characters for Interleaved 2-of-5 bar codes are the digits 0 through 9. Any other characters
will cause the string to be rejected with a rangecheck error.

Interleaved 2-of-5 gets its name from the fact that two digits are encoded in one bar code character,
one in the bars and one in the spaces. For this reason, digits must always be specified in pairs. If an
odd number of digits is specified, PAL furnishes a leading zero. Thus, the string 123 would be
encoded as 01 23.

_barcode: Interleave 2 of 5 48

The generated bit map includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following example generates 0.5 inch tall Interleaved 2-of-5 bar code with 0.01 inch narrow
bars and a ratio of 2.5:1.

(12345678) <</WideRatio 2.5>> /I2of5 _barcode

49 _barcode: PDF-417

_barcode: PDF-417
DataStr [CtrlDict] /PDF417 _barcode

This symbology conforms to the UPC Symbol Specification Manual.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/AddresseeId
/AI

String. Range 1..200 characters. Specifies the data for the PDF-
417 “Addressee ID” macro field. The bar code will not include
the Addressee ID macro field if this parameter is not specified or
an empty string is specified. Default = Empty string (field not
included in bar code).

/Aspect
/A

String. Specifies the height:width (height-to-width) aspect ratio
of the overall two dimension bar code. The string has the format
“(Height:Width)”. Height specifies the height component of the
ratio, and Width specifies the width component. For example,
“/Aspect (2:1)” specifies a bar code which is twice as height as
it is wide. Row and Column with override this dictionary entry.
Default = (1:2).

/BlockCount
/BC

Boolean. true instructs PAL to include the PDF-417 “Block
Count” macro field within the bar code. false instructs PAL to
not include the Block Count macro field as part of the bar code.
Default value = false.

/CheckSum
/CS

Boolean. true instructs PAL to include the PDF-417
“Checksum” macro field within the bar code. false instructs
PAL to not include the field. Default = false.

/Cols
/C

Integer. Range 0..30. Establishes either the absolute or
maximum number of data columns which comprise the bar code.
The SizeFixed parameter controls the selection between
absolute or maximum. Specifying Cols overrides the Aspect
parameter. Specifying Cols without Rows results in PAL
generating a bar code with the minimum number of rows based
on the specified number of columns. Default = Cols not
specified.

/EccPercent
/EP

Integer. Range 0..400. Establishes the amount of error detection
and correction codes added to the user’s data as a percentage of
the amount of user data. This setting overrides the EccLevel
setting unless the user explicitly specifies “/EccPercent 0”.
Default value = 10.

/EccLevel
/EL

Integer. Range 0..7. Establishes the error detections and
correction security level as per the PDF-417 bar code
specification. The EccPercent setting will override this setting
unless the user explicitly specifies “/EccPercent 0”. Default
value = 0.

_barcode: PDF-417 50

/FileId
/FI

String. Range 1..50 characters. Specifies the data for the PDF-
417 “File ID” macro field. The bar code will not include the File
ID macro field if this parameter is not specified or an empty
string is specified. Default = Empty string (field not included in
bar code).

/FileName
/FN

String. Range 1..200 characters. Specifies the data for the PDF-
417 “File Name” macro field. The bar code will not include the
File Name macro field if this parameter is not specified or an
empty string is specified. Default = Empty string (field not
included in bar code).

/FileSize
/FS

Boolean. true instructs PAL to include the PDF-417 “File Size”
macro field within the bar code. false instructs PAL to not
include the field. Default = false.

/Height
/H

Integer or fixed-point. Specifies the height, in current user units,
of the bars in each row of the two dimensional bar code. Default
value = 3 (0.5" / 12.7 mm with default CTM).

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars drawn as part of the bar code. This is
generally referred to as the X dimension. Default value = 0.72
points (1/100” / 0.254 mm with default CTM).

/Rows
/R

Integer. Range 0..90. Establishes either the absolute or
maximum number of data rows which comprise the bar code.
The SizeFixed parameter controls the selection between
absolute or maximum. Specifying Rows overrides the Aspect
parameter. Specifying Rows without Cols results in PAL
generating a bar code with the minimum number of columns
based on the specified number of rows. Default = Rows not
specified.

/SenderId
/SI

String. Range 1..200 characters. Specifies the data for the PDF-
417 “Sender ID” macro field. The bar code will not include the
Sender ID macro field if this parameter is not specified or an
empty string is specified. Default = Empty string (field not
included in bar code).

/SizeFixed
/SF

Boolean. true instructs PAL to treat the Rows and Cols values
as specifying the required size of the two dimension bar code.
This will force the bar code to be the specified size. false
instructs PAL to treat the Rows and Cols values as specifying
only maximum sizes for the respective dimensions of the two
dimensional bar code. Default = false.

/TimeStamp
/T

Integer. Specifies a value for the PDF-417 “Time Stamp” macro
field. A value of -1 instructs PAL to automatically generate the
Time Stamp field value from the printer’s internal real-time
clock. Specifying -1 is only valid on PAL printers which include
internal real-time clock services. Default = Time Stamp field not
included in bar code.

51 _barcode: PDF-417

/Truncate
/TR

Boolean. true instructs PAL to not draw the right side indicators
and right stop pattern for the bar code. false instructs PAL to
draw these patterns. Default = false.

Usage Notes

Error correction coding (ECC) consists of additional data added to the user’s data in order to
facilitate recovery of the user’s data even when the bar code has been damaged and cannot be fully
scanned. PDF-417 provides two different mechanisms for specifying the amount of ECC to include
within the bar code.

EccPercent allows the user to specify the amount of error correction codes to add to the data as a
percentage of the data. The larger the EccPercent value, the more damage the bar code can
sustain while still allowing the scanner to recover 100% of the user’s data.

EccLevel allows the user to select the amount of error correction codes added to the data based on
predetermined values established for PDF-417 bar codes. EccLevel setting manages error
correction and detection during scanning based on the following equation.

faults = errors + 2 × misdecodes

where

errors = the number of unscannable codewords.

misdecodes = number of misdecoded codewords.

The following table gives the number of faults per EccLevel setting which the scanning process
can tolerate and still be able to recover 100% of the user’s data.

EccLevel faults
0 0
1 2
2 6
3 14
4 30
5 62
6 126
7 254
8 510

Due to the advanced nature of the two dimensional PDF-417 symbology, the control parameters
associated with thesymbology have a much higher level of complexity.than more traditional one
dimensional bar codes. Most of the configuration parameters provided by PAL exist to allow the
user extra control over the creation of the bar code.

The user will find that allowing the printer to produce PDF-417 bar codes using the printer’s built-
in default parameters will prove as simple as printing single dimension bar codes. Therefore, users
not familiar with details of PDF-417 bar codes should start by using the printer’s built-in defaults.
Then, if necessary, the user should add only one or two PDF-417 configuration parameters at a
time in order to observe the affect of the parameters upon the bar code.

_barcode: PDF-417 52

Users already famility with the details of PDF-417 bar codes will also already be familiar with the
various configuration parameters provided by PAL.

53 _barcode: UPC-A

_barcode: UPC-A
DataStr [CtrlDict] /UPCA _barcode

This symbology conforms to the UPC Symbol Specification Manual.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/AddOn2
/AO2

Boolean. true instructs PAL to add a two-digit add-on bar code
to the base bar code. false instructs PAL not to add the add-on
bar code. Default value = false.

/AddOn5
/AO5

Boolean. true instructs PAL to add a five-digit add-on bar code
to the base bar code. false instructs PAL not to add the add-on
bar code. Default value = false.

/CheckDigit
/CD

Boolean. true instructs PAL to automatically calculate a check
digit and insert it at the end of the data string, just before the
stop character. The check digit will also be drawn as part of the
human readable. false instructs PAL that the string already
contains the check digit and that the string should be used
without modification. Default value = false.

/Height
/H

Integer or fixed-point. Specifies the height, in current user units,
of the entire bar code image. For this bar code symbology, this is
the height of the entire bar code image include the human
readable text. Default value = 36.0 (0.5" / 12.7 mm with default
CTM).

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars drawn as part of the bar code. This is
generally referred to as the X dimension. Default value = 0.936
(0.013" with default CTM).

/RandWt4
/RW4

Boolean. true instructs PAL to automatically compute the
internal check digit for a four-digit random weight (or price)
field. false instructs PAL not to calculate the check digit.
Default value = false.

/RandWt5
/RW5

Boolean. true instructs PAL to automatically compute the
internal check digit for a five-digit random weight (or price)
field. false instructs PAL not to calculate the check digit.
Default value = false.

Usage Notes

Valid characters for UPC-A bar codes are the digits 0 through 9. Any other characters will cause
the string to be rejected with a rangecheck error.

UPC-A symbols require exactly 12 digits. If fewer digits are provided,, the string will be padded
with leading zeros. If a check digit has been requested PAL computes the correct value and re-

_barcode: UPC-A 54

places the 12th digit with the new check digit. The data string should contain a dummy character in
the 12th digit to receive the check digit. Do not assume that only 11 digits are needed. Specifying
short strings causes the string to be padded with zeros and the last character being replaced by the
check digit.

If the RandWt4 or the RandWt5 flags are true, the last 4 or 5 digits before the check digit con-
tain a random weight or a price. This allows in-store marking of such items as meat or cheese. A
check digit for the random weight is calculated and replaces the character immediately preceding
the 4- or 5-digit field. Since a new check digit must be calculated for the entire, symbol, the
CheckDigit flag should always be set to true when using random weight symbols.

If the AddOn2 or the AddOn5 flags are true, a 2- or 5-digit add-on bar code is added to the right
of the UPC-A symbol. Since the check digits for these add-on bar codes are implicit in the encod-
ing, no check digit is specified for the add-on portion. To specify the text for a bar code with a
supplement, simply add 2 or 5 digits to the end of a standard 12-digit UPC-A number. (Don't
forget that the character before the supplement will contain the normal check digit.)

The generated image includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following example generates 1.13 inch tall UPC-A bar code with 0.013 inch narrow bars. A
check digit will be calculated.

(012345678900) <</Height 72 1.13 mul /CheckDigit true>>
/UPCA _barcode

The following example generates 1.13 inch tall UPC-A bar code with 0.013 inch narrow bars and a
4-digit random weight field. Both zeros in the symbol will be replaced by check digits.

(212345012340) <</Height 72 1.13 mul /RandWt4 true
/CheckDigit true>> /UPCA _barcode

The following example generates 1.13 inch tall UPC-A bar code with 0.013 inch narrow bars and a
5-digit add-on bar code. Note that the zero in the symbol will be replaced with a check digit.

(1234567891012345) <</Height 72 1.13 mul /AddOn5 true
/CheckDigit true>> /UPCA _barcode

55 _barcode: UPC-E

_barcode: UPC-E
DataStr [CtrlDict] /UPCE _barcode

This symbology conforms to the UPC Symbol Specification Manual.

Applicable Control Dictionary Entries

See appendix A., Bar Code Considerations for a discussion of the relationship between the CTM
and default values.

/Height
/H

Integer or fixed-point. Specifies the height, in current user units,
of the overall bar code. For this bar code symbology, the height
includes the human readable text. Default value = 36.0 (0.5" /
12.7 mm with default CTM).

/NarrowWidth
/XWidth
/NW
/X

Integer or fixed-point. Specifies the width, in current user units,
of the narrow bars. This is generally referred to as the X
dimension. Default value = 0.936 (0.013" / 0.33 mm with
default CTM).

/UPCE6
/E6

Boolean. true indicates that the data string contains a standard
12-digit UPC number. false indicates that zero-compressions
has already been performed on the data string and the string
contains exactly six digits. Default value = false.

Usage Notes

Valid characters for UPC-E bar codes are the digits 0 through 9. Any other characters will cause
the string to be rejected with a rangecheck error.

If the UPCE6 flag is false UPC-E symbols require exactly the same 12-digit numbers as UPC-A.
If fewer digits are provided,, the string will be padded with leading zeros. Since the check digit is
integral in the bar encoding for UPC-E symbols, PAL always computes the correct value and re-
places the 12th digit with the new check digit. The data string should contain a dummy character in
the 12th digit to receive the check digit. Do not assume that only 11 digits are needed. Specifying
short strings causes the string to be padded with zeros and the last character being replaced by the
check digit.

12-Digit UPC numbers are zero-compressed using the UPC-E rules. If the number is not compress-
ible (e.g., does not contain enough central zeros), the string will be rejected with a rangecheck
error.

If the 6-digit compressed value is known by the application, it may be specified directly if the
UPCE6 flag is set to true. Since the check digit is computed internally, no dummy character
should be left for it. Specify exactly 6 digits or less. If fewer digits than 6 are specified, the symbol
is padded with leading zeros.

The generated image includes leading and trailing quiet zones (white space). The size of the quiet
zone is 10 times NarrowWidth. If this results in a quiet zone of less than 0.10 inch (2.54 mm), the
user should leave additional white space before and after the bar code.

The following examples generate 1.13 inch tall UPC-E bar codes with 0.013 inch narrow bars.

_barcode: UPC-E 56

(12300000640) <</Height 72 1.13 mul>> /UPCE _barcode

(078349) <</Height 72 1.13 mul /UPCE6 true>> /UPCE _barcode

57 begin

begin
Description

Pushes a dictionary onto the dictionary stack.

Usage

AnyDict begin

AnyDict Dictionary. Dictionary to push onto the dictionary stack.

Comments

The PAL interpreter searches the dictionary stack in order to locate values associated with names
the interpreter encounters during PAL code execution. The interpreter always searches for names
starting with the top-most dictionary on the dictionary stack. The interpreter continues searching
down the stack until it locates the name. Therefore, higher dictionaries on the stack can contain
definitions for names which supercede definitions in lower dictionaries.

The def operator allows the programmer to associate values with names within the top-most dic-
tionary on the dictionary stack. During initialization, the PAL interpreter automatically places the
special dictionary userdict on the top of the dictionary stack. This provides a default storage
location for definitions performed during simple printer operations.

This def operator and name look-up construct provides the programmer with many powerful ca-
pabilities. However, the most common use of the construct involves the definition of simple vari-
ables.

The begin operator gives the programmer the ability to install a new dictionary on the top of the
dictionary stack. The interpreter will then place any new definitions created by the def operator
into this new top-most dictionary rather than into userdict.

This allows the programmer to collect a series of definitions within a single dictionary dedicated to
that purpose. When the PAL code no longer requires the definitions, the programmer can use the
end operator to discard the top-most dictionary from the stack. Provided the programmer has not
created any secondary references to the dictionary, this has the affect of also discarding all
definitions contained within the dictionary.

Hints

The begin and end operators provide the simplest means for procedures to manage local vari-
ables. The following example shows a very ineffecient procedure which averages two numbers.
The procedure uses the begin and end operators to keep the variables First and Second local to
itself.

1: /Average {
2: <<>> begin
3: /Second exch def
4: /First exch def
5: First Second add 2 div
6: end
7: } bind def

begin 58

Line 2 places the procedure's empty dictionary onto the top of the dictionary stack. Lines 3 and 4
save the second and first parameters to the procedure under the variable names Second and First
within the procedure's dictionary. Line 5 recalls the two values using the variable names and then
performs the averaging equation. Line 6 discards the procedure's dictionary from the dictionary
stack. Since no secondary reference to this dictionary exists, this also discards the First and
Second variables from the printer's memory.

59 bind

bind
Description

Optimizes the specified procedure for faster execution.

Usage

AnyProc bind BoundProc

AnyProc Procedure. The procedure to optimize.

BoundProc Procedure. The same procedure after optimization.

Comments

When initially sent to a PAL printer by a programmer, a procedure contains executable name
objects which reference intrinsic operator objects in the dictionary stack. When the PAL interpreter
executes the procedure, it must locate each name within the dictionary stack when it encounters the
name in order to find the associated intrinsic operator object. The intrinsic operator object then
instructs the interpreter to perform the desired action.

This process permits the programmer to substitute alternate definitions for the standard PAL
interpreter operator names by associating alternate objects with each name on the dictionary stack.
However, in most cases, the programmer does not require this capability. As a result, replacing the
executable names within a procedure with the actual intrinsic operators associated with each name
can improve the execution speed of a procedure. The bind operator performs this substitution.

Once the bind operator has optimized a procedure, the interpreter directly encounters the intrinsic
operator objects when executing the procedure. The interpreter no longer needs to locate ex-
ecutable names within the dictionary stack every time it executes the procedure.

The bind operator also automatically optimizes any procedures defined within the specified pro-
cedure. The bind operator only substitutes executable name objects associated with intrinsic op-
erator objects. The operator does not substitute name objects associated with numeric, string, or
other object types.

Hints

Once the bind operator has replaced an executable name object with its associated intrinsic op-
erator object within a procedure, changes to the executable name within the dictionary stack no
longer affect the procedure. Therefore, the bind operator can protect a procedure from performing
undesired actions by preventing subsequent changes to operator names from affecting the
procedure.

bitshift 60

bitshift
Description

Shifts the bits of an integer left for positive shift counts, and right for negative shift counts.

Usage

AnyInt ShiftInt bitshift ShiftedInt

AnyInt Integer. Integer value consisting of bits to shift.

ShiftInt Integer. Distance, in bits, over which to shift the bits of AnyInt. Positive values
for ShiftInt result in left-shifts. Negative values result in right-shifts.

Comments

The interpreter will shift the bits of the specified integer, AnyInt, by the specified number of bits,
ShiftInt. Positive values for ShiftInt instruct the interpreter to shift the bits to the left. Under the
PAL specification, shifting left implies shifting toward the most significant bit of the value.
Negative values for ShiftInt instruct PAL to shift the bits to the right — toward the least significant
bit of the value.

The interpreter always fills any vacated bit positions with zero value bits. Filling with zeroes oc-
curs regardless of the direction of the shift. Therefore, the interpreter always performs an unsigned
shift operation.

61 ceiling

ceiling
Description

Returns the next higher integer value.

Usage

AnyNum ceiling CeilingNum

AnyNum Integer or fixed-point. Value to raise to the next higher integer.

CeilingNum Integer or fixed-point. Next higher integer above AnyNum. The type of the re-
turned value matches the type of the supplied parameter.

Comments

Although this operator will accept integer values, this operator has no affect upon integers. The
following table shows the affect of the ceiling operator upon various fixed-point values.

1.6 ceiling 2.0
1.5 ceiling 2.0
1.4 ceiling 2.0
1.0 ceiling 1.0
0.0 ceiling 0.0

-1.0 ceiling -1.0
-1.4 ceiling -1.0
-1.5 ceiling -1.0
-1.6 ceiling -1.0

clear 62

clear
Description

Discards all objects from the operand stack.

Usage

NAny..1Any clear

NAny..1Any Any. All objects on the operand stack.

Comments

The clear operator discards all objects from the operand stack. The programmer will find this
operator useful for ensuring a clean stack at the start of a job.

63 cleartomark

cleartomark
Description

Discards all objects from the operand stack down to, and including, the top-most mark object.

Usage

Mark NAny..1Any cleartomark

Mark Mark. Top-most mark object on the stack.

NAny..1Any Any. All objects on the operand stack above the top-most mark object.

Comments

The cleartomark operator discards all objects from the operand stack above the top-most mark
object. The operator also discards the mark object itself.

By pushing a mark object onto the stack, the programmer can later restore the stack to that prior
level simply by using the cleartomark operator.

closepath 64

closepath
Description

Closes the current drawing sub-path by drawing a line from the current point to the initial point of
the sub-path.

Usage

closepath

Comments

Paths consist of a series of line segments. As the programmer adds additional line segments onto
the end of a path, PAL joins the lines in memory. By joining the lines, PAL can smooth the
transition between two line segments during drawing. However, even if the programmer makes the
end of the final line meet the start of the first line, PAL does not know if it should join together
these first and last line segments.

By using the closepath operator, the programmer instructs PAL to connect the end of the path to
the beginning of the path. This allows PAL to smooth the connection between the last and first line
segments of the path.

The example below shows what happens when using only the moveto, lineto, and stroke opera-
tors to draw a square with butt line caps. The solid line in the center shows the path specified by
the moveto and lineto operators. The gray area shows the line actually drawn based on the current
line width. The drawing sequence starts and ends in the upper left corner of the square. Since the
example does not use closepath, PAL draws the start and end of the path, both in the upper left
corner, using the default butt line caps. This results in a notch where the lines come together. The
size of the notch varies directly with the line width.

By replacing the final lineto operator with the closepath operator, the programmer instructs PAL
to smooth the connection at the start and end of the square. The example given below illustrates the
result of using the closepath operator instead of the final lineto operator necessary to close the
square.

65 closepath

Hints

The programmer should always use the closepath operator instead of the final lineto operator to
close the path. The closepath operator implies a lineto operation. Therefore, drawing a square
involves a moveto operation, three lineto operations, and a final closepath operation. At a
minimum, specifying four lineto operations followed by a closepath operation wastes time and a
little memory. However, under certain circumstances, it may also produce undesired results.

concat 66

concat
Description

Appends one string to the end of another string.

Usage

LeadStr TrailStr concat ConcatStr

LeadStr String. The string containing the characters which PAL will place at the start of
the new ConcatStr string.

TrailStr String. The string containing the characters which PAL will place at the end of
the new ConcatStr string.

ConcatStr String. The new string created by the interpreter which begins with the characters
from LeadStr and ends with the characters from TrailStr.

Comments

The interpreter creates a the new string ConcatStr. ConcatStr will consist of the characters from
LeadStr followed by the characters from TrailStr.

67 copy

copy
Description

Duplicates multiple stack objects or copies one array, dictionary, or string to anther array, dic-
tionary, or string.

Usage

NAny..1Any NInt copy NAny..1Any NAny..1Any
1Array 2Array copy 2Array

1Dict 2Dict copy 2Dict
1Str 2Str copy 2Str

NAny..1Any Any. Stack objects to duplicate.

NInt Integer. Number of stack objects to duplicate.

1Array Array. Source array to copy to 2Array.

2Array Array. Target array to receive copy of 1Array.

1Dict Dictionary. Source dictionary to copy to 2Dict.

2Dict Dictionary. Target dictionary to receive copy of 1Dict.

1Str String. Source string to copy to 2Str.

2Str String. Target string to receive copy of 1Str.

Comments

The first variant duplicates the top NInt objects on the operand stack. For composite objects, the
source and duplicate objects will share the same composite data.

The second variant duplicates the composite data within 1Array to 2Array. The objects within
1Array replace the same position objects within 2Array. 2Array must match or exceed the size of
1Array. If 2Array exceeds the size of 1Array, the operation will not affect the additional elements
of 2Array. If 1Array contains composite objects, the duplicate objects placed into 2Array will
share their composite data with the original objects in 1Array.

The third variant duplicates into 2Dict the key + value entries within 1Dict. The key + value pairs
within 1Dict will replace any key + value entries within 2Dict which have identical keys. For
unique key values, the interpreter will add the key + value entries from 1Dict to 2Dict. If 2Dict
contains keys which do not match any keys within 1Dict, the operation will not affect those 2Dict
entry pairs. If 1Dict contains composite objects, the duplicate objects placed into 2Dict will share
their composite data with the original objects in 1Dict.

The fourth variant duplicates the characters in 1Str into 2Str. The characters within 1Str replace
the same position characters within 2Str. 2Str must match or exceed the size of 1Str. If 2Str ex-
ceeds the size of 1Str, the operation will not affect the additional characters of 2Str.

copy 68

Hints

The following examples demonstrate the subtle difference between using the dup and copy op-
erators. The first example shows the use of the dup operator to place a second reference to an ar-
ray onto the stack. The second example shows the use of the copy operator to make a copy of an
array into a new array. The second and third lines of each example shows the interpreter's output in
response to the == operators.

1: [0 1 2 3] dup dup 1 (hello) put == ==
[0 (hello) 2 3]
[0 (hello) 2 3]

2: [0 1 2 3] dup dup length array copy dup 1 (hello) put == ==
[0 (hello) 2 3]
[0 1 2 3]

As shown by the first example, the dup operator simply creates a second reference to the same
array. As a result, the put operator changes the single array referenced by both stack entries.

The second example uses the dup, length, and array operators to create a new array with the same
number of elements as the original array. The example then uses the copy operator to copy all of
the original array's contents to the new array. The put operator then only affects the new array.

Both the dup and copy operators serve seperate but equally useful functions. The dup operator
creates a second reference to an array. Since both references share the same data, both references
share any modifications made to the array. In addition, the programmer does not need to consume
additional memory by have multiple copies of the same array.

The copy operator allows the programmer to create a new array containing the same data as the
first array. This allows the programmer to modify either the first or second array without affecting
the other array. However, each array consumes memory space within the printer. In addition, any
composite objects copied from one array to the other will share their data.

69 count

count
Description

Returns a count of the number of objects currently on the operand stack.

Usage

NAny..1Any count NAny..1Any NInt

NAny..1Any Any. All objects on the operand stack.

NInt Integer. Number of objects on the operand stack..

Comments

The count operator pushes onto the operand stack a count of the number of objects resident on the
operand stack prior to execution of the count operator.

counttomark 70

counttomark
Description

Returns a count of the number of objects currently on the operand stack above the top-most mark
object.

Usage

Mark NAny..1Any count Mark NAny..1Any NInt

Mark Mark. Top-most mark object on the operand stack.

NAny..1Any Any. All objects on the operand stack above the top-most mark object.

NInt Integer. Number of objects on the operand stack above the top-most mark ob-
ject.

Comments

The counttomark operator pushes onto the operand stack a count of the number of objects resi-
dent on the operand stack above the top-most mark object prior to execution of the counttomark
operator. The count does not include the mark object itself.

71 currentdict

currentdict
Description

Returns the dictionary object currently on the top of the dictionary stack.

Usage

currentdict CurDict

CurDict Dictionary. Dictionary object current on top of the dictionary stack.

Comments

currentdict pushes a dictionary object for the dictionary currently on top of the dictionary stack.
The operator does not alter the dictionary stack. The dictionary remains on top of the dictionary
stack. The operator pushes a duplicate object which references the same dictionary data.

Under most circumstances, this operator proves useful when deleting an entry made in the curent
dictionary using the def operator. By using "currentdict /Name undef", the user does not need to
know which dictionary resides on top of the dictionary stack. The user only needs to know that no
other dictionary was pushed (using begin) onto the dictionary stack since def was used to define
/Name.

currentgray 72

currentgray
Description

Returns the current color setting mapped to the DeviceGray color space.

Usage

currentgray LevelFxpt

LevelFxp Fixed-Point. Current color setting mapped to the DeviceGray color space. The
value ranges from 0.0 (black) to 1.0 (white).

Comments

PAL currently only supports the DeviceGray color space. This operator will return the last gray
level established using the setgray operator.

Different printer models may have different interpretations for the gray level requested via the
setgray operator. PAL printer models which support only black and white printing will always
translate gray level requests into either black or white.

The currentgray operator always returns the color requested via the setgray operator and not the
color which the printer may actually be printing. Therefore, when the user requests 20% gray level
by specifying “0.2 setgray” on a printer which supports only black and white, the printer will
probably round the 20% gray level request down to 0% gray level (black). However, the
currentgray operator will still return 0.2 (20%) since that was the gray level requested via the
setgray operator.

PAL printers default at power-on to 0% gray level (black).

73 currentpoint

currentpoint
Description

Returns the coordinates of the current point.

Usage

currentpoint XNum YNum

XNum Integer or fixed-point. Current X coordinate in user coordinates.

YNum Integer or fixed-point. Current Y coordinate in user coordinates.

Comments

The operator returns the position of the current point. PAL returns the coordinates in the user
coordinate system.

Some PAL drawing applications move the current point. For example, the show operator
automatically moves the current point to the end of drawn string. This allows the user to quickly
draw another string following the first string without having to calculate the string's proper
position. If required, the currentpoint operator allows the programmer to determine the new
current point location following these draw operations.

cvs 74

cvs
Description

Converts a numeric value to a string containing the value's human readable decimal representation.

Usage

ValNum DummyStr cvs DecStr

ValNum Integer or fixed-point. Numeric value to convert into a string.

DummyStr String. Required for historical compatibility. The interpreter does not use this
parameter.

DecStr String. String created by the interpreter which contains the human readable
decimal representation of ValNum.

Comments

The interpreter converts ValNum to its human readable decimal representation. If then creates
DecStr containing the result.

For positive values, DecStr will not contain a leading plus (+) sign. DecStr will contain a leading
negative (-) sign for negative DecStr values. DecStr will not include any leading zeroes or
commas. For fixed-point values, DecStr will contain a decimal point (.) with at least one digit both
before and after the decimal point.

The following examples demonstrate some of the results possible using the cvs operator.

0.1 () cvs (0.1)
-1.0 () cvs (-1.0)

+00.01 () cvs (0.01)
-10.00 () cvs (-10.0)

45 () cvs (45)
-14 () cvs (-14)

75 cvx

cvx
Description

Converts a literal name or file object into a executable object.

Usage

LiteralFile cvx ExecFile
LiteralName cvx ExecName

LiteralFile File. Literal file object to convert to executable.

ExecFile File. Literal file object converted to executable.

LiteralName Name. Literal name object to convert to executable.

ExecName Name. Literal name object converted to executable.

Comments

When PAL encounters an object for execution, it checks the object's literal/executable attribute. If
the object has a literal attribute, PAL simply pushes the object onto the top of the operand stack. If
the object has an executable attribute, PAL attempts to perform any operations stored within the
object.

Under most circumstances, PAL automatically assigns objects the literal attribute. This means that
PAL will treat the objects as data whenever it encounters the objects.

Name Objects

Executable names provide the most notable exception to this rule. PAL requires the placement of a
slash character at the start of a name in order to specify a literal name. Without the preceding slash
character, PAL will treat a name as executable.

Programmers often find it beneficial to store within a database various references to procedures.
For example, the records within a parts database could include references to a procedure which
draws the picture of the part.

In order to store the name of each procedure within the database, the programmer must specify a
literal name. This prevents PAL from attempting to immediately execute the procedure. The cvx
operator allows the programmer to convert the literal name object to executable in order to execute
the associated procedure.

Once the programmer has converted a literal name to executable using the cvx operator, the
programmer must then use the exec operator to instruct the interpreter to execute the converted
name.

File Objects

The file and _devicefile operators return literal file objects. These objects provide a type of
pointer to the opened file. When the programmer wishes to read or write the file, the programmer

cvx 76

must specify the file object associated with the file. By specifying the file object, the programmer
informs PAL which file to read or write.

Normally, the PAL interpreter reads the standard file %stdin to receive operations to perform.
However, the programmer can use the exec operator to specify an different file for the interpreter
to read. However, the exec operator requires that the programmer specify an executable file object
and not a literal file object. Therefore, the programmer must use the cvx operator to convert the
literal file objects returned by file and _devicefile to executable.

Hints

The cvx operator provides the programmer with very advanced capabilities which only the most
advanced applications will require.

As mentioned above, the programmer can store the names of procedures within a database
constructed from array and/or dictionary objects. The following provides an example of this type
of database.

1: /WidgetProc {36 36 moveto (Widget) show} bind def
2: /BobbelProc {36 36 moveto (Bobbel) show} bind def
3: /Parts <<
4: /Widget [12.95 6 /WidgetProc]
5: /Bobbel [99.95 8 /BobbelProc]
6: >> def
7:
8: Parts /Widget get 2 get cvx exec showpage
9: Parts /Bobbel get 2 get cvx exec showpage

Lines 1 and 2 define unique page drawing procedures for each part in the Parts database. Lines 3
through 6 define the actual parts database. Each database entry contains the name of the part as the
key, and an array of data associated with each part. The array contains the part's price, the quantity
on hand, and the name of the part's page drawing procedure. Lines 8 and 9 recall each part from
the Parts database and print the page associated with the part.

77 def

def
Description

Stores a data value under a specified key in the top-most dictionary on the dictionary stack.

Usage

KeyAny DataAny def

KeyAny Any type. Key under which to store the specified object.

DataAny Any type. Object to store under the specified key.

Comments

Both KeyAny and DataAny may be of any type. However, the interpreter provides special opti-
mized handling of name objects when used as dictionary entry keys. As a result, if the programmer
specifies a string for KeyAny, the interpreter automatically converts the string to a literal name
before storing the key into the dictionary. In addition, names provide the easiest means for
recalling the DataAny object at a future time.

The programmer can use the def operator to save any data object, including complex data objects
such as dictionaries, arrays, and procedures into the printer's memory. If a name object was used
for KeyAny, the programmer or procedures written by the programmer can later recall these data
objects onto the operand stack by simply specifying KeyAny.

If an entry for KeyAny already exists in the top dictionary on the dictionary stack, def replaces the
old DataAny in the dictionary's entry with the new DataAny.

During printer initialization, the PAL interpreter creates an empty dictionary named userdict. The
interpreter then places this dictionary on the top of the dictionary stack. Unless the PAL
programmer places another dictionary above userdict on the dictionary stack, the def operator will
store KeyAny and DataAny into userdict. The PAL interpreter provides this dictionary for
exactly this purpose. userdict provides an easily accessible location for storing data objects and
procedures.

Hints

Using name objects as the KeyAny parameter serves the same basic purpose as variables in other
programming languages. The def operator provides the same basic purpose as assigning a value to
a variable. However, the def operator also provides the means to store PAL procedures within the
printer's memory. The host computer can later invoke these procedures to perform various desired
actions. Other procedures can also invoke these procedures in a manner similar to using
subroutines or functions in other programming languages.

_devicefile 78

_devicefile
Description

Opens a device for reading and/or writing at a low access level.

Usage

FileStr AccessStr _devicefile OpenFile

FileStr String. Specifies the name of the device to open.

AccessStr String. Specifies the type of access to the device which the programmer desires.
See the file operator discussion for information on AccessStr.

Comments

Only a very small percentage of PAL applications require the use of the _devicefile and file
operators. Out of that small percentage, an even smaller percentage require the use of the
_devicefile operator.

When used with storage devices such as flash memory, the _devicefile operator normally by-
passes the printer's standard file management services. The operator allows the programmer to
directly access the storage medium. Especially in the case of performing any write operations, this
can result in irreparable damage to file management information contained on the storage media.
Thereby rendering any files contained on the media inaccessible.

Only experienced programmers with detailed information regarding the printer's use of storage
media should attempt to use the _devicefile operator.

79 _deviceformat

_deviceformat
Description

Clears a low level device such as flash memory.

Usage

FileStr AccessStr _deviceformat

FileStr String. Specifies the name of the device to open.

AccessStr String. The access string for this operator must be an empty string, i.e. ().

Comments

This operator causes the storage device being accessed to be completely cleared. CAUTION must
be used with this operator since any pre-loaded PAL applications in the specified device file will
be lost.

Only experienced programmers with detailed information regarding the printer's use of storage
media should attempt to use the _deviceformat operator.

dict 80

dict
Description

Creates an empty dictionary.

Usage

PairsInt dict EmptyArray

PairsInt Integer. Number of key + value entry pairs anticipated for the dictionary.

EmptyDict Dictionary. An empty dictionary.

Comments

This operator performs the exact same function as the PAL sequence "<<>>". The operator
requires the PairsInt parameter strictly for historical compatibility. Historically, the PairsInt pa-
rameter specified the number of key + value pairs which the programmer anticipated the dictionary
to hold. Although the parameter no longer affects the operator, the PairsInt parameter is required
from a syntactical standpoint.

81 div

div
Description

Divides the next-to-top stack value by the top stack value and returns the quotient.

Usage

DividendNum DivisorNum div QuotientFxp

DividendNum Integer or fixed-point. Value to divide by DivisorNum.

DivisorNum Integer or fixed-point. Value to divide into DividendNum.

QuotientFxp Fixed-point. Result of division. The interpreter always returns a fixed-point re-
sult regardless of the operands.

Comments

The div operator always generates a fixed-point quotient regardless of the operand types. PAL
provides the idiv operator for calculating integer quotients.

Hints

As with most computer systems, most PAL printers can perform integer calculations faster than
fixed-point calculations. Therefore, the programmer should consider using integer math whenever
possible. The idiv operator performs an integer divide rather than a fixed-point divide. As a result,
the programmer should consider using idiv instead of div whenever possible.

_dspclear 82

_dspclear
Description

Clear an area of the printer's front panel character display.

Usage

BBoxArray _dspclear

BBoxArray Array. Bounding box for area to clear.

[Left Top Right Bottom]

Left Integer or fixed-point. Left-most character column of display area to
clear. The interpreter includes this column as part of the area cleared.

Top Integer or fixed-point. Top-most character line of display area to clear.
The interpreter includes this line as part of the area cleared.

Right Integer or fixed-point. Right-most character column of display area to
clear. The interpreter includes this column as part of the area cleared.

Bottom Integer or fixed-point. Bottom-most character column of display area to
clear. The interpreter includes this line as part of the area cleared.

Comments

The BBoxArray parameter specifies the bounding box of the display area which the operator will
clear. The BBoxArray array object must contain the four values shown above.

These four values establish a rectangular region of character positions on the display for the op-
erator to clear. Left specifies the left-most character column to include as part of the clear opera-
tion. Right specifies the right-most character column to include. Top specifies the top-most line to
include. Bottom specifies the bottom-most line to include.

Although variations may occur between different PAL printers, in general column 0 specifies the
left-most column of the display and row 0 specifies the top-most row. The column numbers
increment to the left, and the row numbers increment down.

83 _dspmovecursor

_dspmovecursor
Description

Reposition visible cursor on front panel character display.

Usage

ColumnNum LineNum _dspmovecursor

ColumnNum Integer or fixed-point. Character column at which to locate visible cursor.

LineNum Integer or fixed-point. Character line at which to locate visible cursor.

Comments

Most PAL printers with front panel displays have the ability to display a cursor on the display.
Presentation of a cursor can prove very useful when requesting input from the printer operator via
the front panel. The _dspmovecursor operator provides the PAL programmer with the ability to
locate this cursor where ever appropriate.

The PAL interpreter maintains separate locations for the visible cursor and the invisible next
character position. This allows the PAL programmer to write new characters onto the display
without affecting the position of the visible cursor.

Under normal printer operation, the PAL interpreter leaves the displayable cursor disabled. This
has the affect of removing the cursor from the display. The PAL programmer can freely move the
display cursor around the display. However, the operator will not see the cursor until the
programmer enables the cursor via the _dspsetcursor operator. Once the programmer enables the
cursor, it will appear at the last cursor position established via the _dspmovecursor operator.

_dspmoveto 84

_dspmoveto
Description

Reposition invisible next character pointer on front panel character display.

Usage

ColumnNum LineNum _dspmoveto

ColumnNum Character column at which to locate invisible next character pointer.

LineNum Character line at which to locate invisible next character position.

Comments

On printers with front panel character displays, _dspmoveto allows the programmer to position
the invisible next character pointer on the display. The invisible next character pointer establishes
the location at which the _dspstring operator will display any future string.

The PAL interpreter maintains separate locations for the invisible next character pointer and the
visible cursor. This allows the PAL programmer to write new characters onto the display without
affecting the position of the visible cursor.

85 _dspsetcursor

_dspsetcursor
Description

Select front panel character display visible cursor style.

Usage

ControlDict _dspsetcursor

ControlDict Dictionary. Controls for establishing new visible cursor style.

/Block Boolean. true enables the displaying of a block style cursor. false dis-
ables the block style cursor. Enabling the block style cursor does not
necessarily disable any other cursor style. Some displays have the
ability to display multiple cursor styles at one time.

/DspEnable Boolean. true enables the front panel character display. false disables
(blanks) the display.

/UL Boolean. true enables the displaying of an underline style cursor. false
disables the underline style cursor. Enabling the underline style cursor
does not necessarily disable any other cursor style. Some displays have
the ability to display multiple cursor styles at one time.

Comments

Some displays only support a single cursor style. If that is the case, then the /Block and /UL
functions behave the same.

_dspstring 86

_dspstring
Description

Displays text at the invisible next character position on the front panel character display.

Usage

AnyStr _dspstring

AnyStr String. Text to display.

Comments

This operator provides the primary means for programmers to display messages on the printer's
front panel character display.

Programmers should expect to find this operator only on printers with front panel displays. The
discussion of the _dspclear operator includes important information concerning PAL's support for
front panel displays.

87 dup

dup
Description

Pushes a second copy of the top-most object on the operand stack.

Usage

Any dup Any Any

Any Any. Stack object to duplicate.

Comments

This operator performs the same function as the PAL sequence "1 copy". It simply duplicates the
top-most object on the operand stack. For composite objects, the source and duplicate objects will
share the same composite data.

Hints

The copy operator discussion includes examples which show the subtle difference between copy
and dup when duplicating composite objects.

end 88

end
Description

Pops the top-most dictionary from the dictionary stack.

Usage

end

Comments

The end operator removes dictionaries from the dictionary stack placed there by the begin opera-
tor. The begin operator discussion also covers the end operator.

89 eq

eq
Description

Compare two objects for equality.

Usage

1Any 2Any eq Bool

1Any Any. First object to compare. With the exception of integer, fixed-point, string,
and name objects, 1Any must have the same object type as 2Any. The operator
will compare integer and fixed-point objects in any combination. The operator
will also compare any combination of string and name objects.

2Any Any. Second object to compare.

Bool Boolean. A value of true indicates equality. A value of false indicates inequal-
ity.

Comments

PAL will compare for equality any two objects of the same object type. PAL will also compare any
combination of integer and fixed-point objects, as well as any combination of string and name
objects.

PAL compares strings and names using the standard ASCII character sorting sequence including
case sensitivity. Therefore, the string (abc) does not match the string (ABC).

For composite objects, the two objects must reference the exact same composite data. Therefore,
the PAL sequence "[1 2 3] [1 2 3] eq" produces the result "false". However, the sequence "[1 2
3] dup eq" produces the result "true".

In the first case, the sequence creates two unique arrays which happen to contain the same data.
Since the array objects reference different data within the printer's memory, the objects do not meet
PAL's condition for equality.

In the second case, the sequence creates a single array and a second reference to the same array
data. Since the array objects reference the same data within the printer's memory, the objects meet
PAL's condition for equality.

Hints

PAL uses the same conditions for equality for the eq operator as it does when comparing key
values in dictionaries.

erasepage 90

erasepage
Description

Discard all drawing previously performed on the current page.

Usage

erasepage

Comments

Under most circumstances, programmers will have no use for this operator. The operator has the
affect of canceling all previous drawing performed on the current page.

91 exch

exch
Description

Exchange the top-most object on the operand stack with the next lower object.

Usage

1Any 2Any exch 2Any 1Any

1Any Any. Second-to-top object on the operand stack.

2Any Any. Top-most object on the operand stack.

Comments

exch simply exchanges the positions of the two top objects on the operand stack.

exec 92

exec
Description

Execute the object on the top of the operand stack.

Usage

Any exec

Any Any. Object to execute.

Comments

As PAL encounters objects received from the host computer or contained in procedures, PAL
executes each object. In most cases, when PAL encounters an object, it marks the object as literal.
This means that PAL will treat the object as data. When PAL executes a literal object, it does
nothing more than push the object onto the top of the operand stack. Therefore, PAL simply
pushes most of the objects it encounters onto the operand stack.

The exec operator instructs PAL to "encounter" the object on the top of the object stack. As a
result, PAL pops the object off the stack and pretends it has just received the object from the host
computer. This causes the interpreter to execute the object. Just as in the case of objects received
from the host, literal objects on the top of the stack will simply result in PAL pushing the object
back onto the top of the stack.

However, it PAL encounters an executable object on the stop of the stack. It will perform the
operations associated with that executable object. Executable objects typically include name and
file objects which the programmer has converted from literal to executable using the cvx operator.
The cvx operator discussion includes using the exec operator in conjunction with the cvx
operator.

93 _execexit

_execexit
Description

Terminates executive mode and returns the printer to normal host communications mode.

Usage

_execexit

Comments

Although well suited for experimenting with PAL operators, PAL's executive mode generates
prompts and other extraneous output which generally prove undesirable when communicating
directly with a host computer. If the programmer uses the executive keyword to enter executive
mode, the programmer can later use the _execexit keyword to terminate executive mode and
reestablish normal host communications.

execform 94

execform
Description

Captures the results of a drawing sequence for faster reuse on the same or subsequent pages.

Usage

FormDict execform

FormDict Dictionary. Contains parameters for capturing the desired drawing sequence as
well as the procedure which performs the drawing sequence. This dictionary
contains the following entries.

/BBox [LeftNum BottomNum RightNum TopNum]
Array. Specifies the area on the page in which PAL will capture any
drawing operations. PAL will clip any drawing operations which
exceed these boundaries. The values are in the form coordinate system,
which is establish by applying the /Matrix entry in FormDict to the
current coordinate system.

LeftNum Integer or fixed-point. Specifies the left edge of the capture
area.

BottomNum Integer or fixed-point. Specifies the bottom edge of the capture
area.

RightNum Integer or fixed-point. Specifies the right edge of the capture
area.

TopNum Integer or fixed-point. Specifies the top edge of the capture
area.

/FormType Integer. This entry exists primarily to provide for future expansion. This
entry must have the value one (1) at this time.

/Matrix Array. Specifies a transformation matrix which PAL will apply
(concatenate to) the current transformation matrix before starting the
drawing operations to be captured. To use the current transformation
matrix setting, specify a matrix of "[1 0 0 1 0 0]".

/PaintProc Procedure. Specifies the procedure containing the drawing operations
which PAL will capture.

Comments

The execform operator instructs PAL to capture a series of drawing operations. When PAL
captures the specified drawing sequence, PAL produces a "form". A form is equivalent to a
graphic image sent from a host computer. However, in the case of a form, the image is created
within the printer's memory. PAL automatically determines the size of the image from the /BBox
entry specified in FormDict.

95 execform

After PAL captures the drawing sequences and has created the form, PAL saves the form image
inside FormDict. Whenever PAL executes the execform operator, it checks the specified
FormDict to see if the dictionary already contains a previously created form. If the dictionary
already contains a form, PAL does not bother to execute the drawing sequences. Instead, PAL
simply renders the already created form onto the page.

The execform operator provides the user with the capability of drawing repetative images only a
single time. These images can then be rendered multiple times onto a single or multiple pages
without having to repeat the drawing operations. This has the affect of improving print speed since
the printer does not have to perform redundant drawing operations.

Although the execform operator has several complex parameters, the operator can be easy to use
if a couple simple models are followed. First, in all cases, the /FormType entry always has the
value one (1). Therefore, every FormDict must contain the entry "/FormType 1". Other values
have been reserved for future options.

Second, most users do not wish to alter the current transformation matrix when drawing their form.
Most users wish to draw their form using the same coordinate system in which they are drawing the
rest of their page. As a result, FormDict typically contains the entry "/Matrix [1 0 0 1 0 0]". This
entry specifies that the current transformation matrix will not be altered for the drawing operations.

The /BBox entry in FormDict specifies the area on the page in which the form image is to be
drawn. The first time execform is executed, PAL will capture all drawing operations which occur
to that area of the page. It will then save the image of that area as the form image within FormDict.
If FormDict already contains a previous form image when execform is executed, PAL will then
draw the existing image onto the page within the specified /BBox area.

The /PaintProc entry in FormDict specifies the actual procedure which performs the drawing
operations to be captured within the form image. The entry has an actual procedure, and not just
the name of a defined procedure. Therefore, the entry has the appearance "/PaintProc {...drawing
operations...}". However, for more complex drawing operations, it is common for the /PaintProc
procedure simply to execute a separately defined procedure. For example, the entry might simply
be "/PaintProc {MyFormDrawProc}", where MyFormDrawProc is the name of a previously
defined procedure.

Since PAL saves the form image within FormDict, the user should treat FormDict as if it were the
actual form image. So long as the user keeps FormDict saved in memory, any form image
contained in FormDict will also remain saved. Once the user discards FormDict from memory, the
form image will be lost and will need to be regenerated if it is required in the future.

Since form images can consume considerable memory depending upon their size, users should
consider explicity discarding any FormDicts from memory when changing between different types
of pages to be printed. This will release the memory being used for form images which do not
apply to the new pages.

The following shows a template for one way to use the execform operator. In the template, the
user simply needs to replace the italicized portions with the information appropriate for the form to
be rendered.

execform 96

/FormNameProc {
 ...form drawing instructions...
} bind def

/FormNameDict <<
 /FormType 1
 /BBox [Left Bottom Right Top]
 /Matrix [1 0 0 1 0 0]
 /PaintProc {FormNameProc}
>> def

FormNameDict execform

First, the user should select some name for the form. This name should replace FormName in the
above template. This will result in the definition of a procedure under the selected form name with
Proc appended to the end of the form name. It will also result in the definition of a dictionary to
contain the form image under the user's selected form name with Dict appended to the end of the
form name.

The definition of the FormNameProc contains the operations necessary to render the form image
onto the page. These operations are indicated by "...form drawing instructions..." in the template.

Left, Bottom, Right, and Top in the template specify the area on the page in which the form is to
be drawn. These values are specified using the current coordinate system. Since PAL defaults to
typesetter points for the coordinate system, these values should be specified in typesetter points
unless the user has altered the coordinate system.

Within the form dictionary FormNameDict, the /PaintProc entry has been simplified to
execute the separate procedure FormNameProc. This allows the user to define a large series of
drawing operations outside the definition of the form dictionary.

Whenever the user wishes to render the form onto the page, the user simply needs to specify the
operation "FormNameDict execform". The first time PAL encounters the operation
FormNameDict will not yet contain a form image, so PAL will execute /PaintProc which in
turn will execute /FormNameProc. PAL will then capture the form image and save it as part of
FormNameDict. For all subsequent executions of "FormNameDict execform" PAL will
simply use the form image already contained within FormNameDict.

The user must be careful not to redefine FormNameDict once it has been defined. If the user
redefines FormNameDict, any form image contained within FormNameDict will be lost and
PAL will have to recreate it during the next execform operation involving that dictionary.
Therefore, the definition of FormNameDict as well as FormNameProc should only occur as
part of a print job initialization sequence before the sequence of pages starts printing.

At the end of the print job, the user can use the undef operator to discard FormNameDict and
any form image it contains. This can release a significant amount of memory when larger form
images are involved.

97 executive

executive
Descriptions

Places the printer into a prompted line input mode to facilitate experimentation with PAL operators
using a terminal or terminal emulation program.

Usage

executive

Comments

executive mode makes it easier for a programmer to directly interface with the PAL interpreter
using a terminal or terminal emulation program. Under executive mode, the interpreter will
prompt the programmer when the interpreter requires additional input.

Once prompted, the programmer can enter a full line of PAL data and operators. During line input,
the programmer can use backspace and other limited line editing capabilities. Under executive
mode, the interpreter accepts the following line editing controls.

Oct Dec Hex Mnemonic Typical Keys Description

010 008 08 BS Ctrl+H Backspace. Delete last character on the line.

012 010 0A LF Ctrl+J Line Feed. Indicates completion of the current
line, thereby allowing PAL to process the line.

015 013 0D CR "Enter",
"Return", or
Ctrl+M

Carriage Return. Functions same as Ctrl+J.

022 018 12 DC2 Ctrl+R Retype. PAL will display the line as it has
been entered so far.

025 021 15 NAK Ctrl+U Undo. Instructs PAL to discard the current
line so that the programmer can start the line
over again.

Under executive mode, the interpreter continues to process data in exactly the same manner as
under normal host communications. The only difference being that the interpreter allows the
programmer to enter and edit a full line before processing the data.

Entering and exiting executive mode has no effect upon other areas of printer operation. The
programmer can start by sending commands to the printer under normal host communications
mode. The programmer can then switch to executive mode to supply additional commands. The
programmer can then use the _execexit operator to terminate executive mode and resume normal
host communications.

exit 98

exit
Descriptions

Terminate the inner-most active loop.

Usage

exit

Comments

The exit operator allows the programmer to prematurely terminate a loop. The operator terminates
only the inner-most active loop. Since the loop operator includes no termination condition for the
loop it creates, the programmer must use the exit operator to terminate a loop created by the loop
operator. The exit operator will also terminate loops created by the for and repeat operators.

99 file

file
Description

Opens a data file for reading and/or writing.

Usage

FileStr AccessStr file OpenFile

FileStr String. Specifies the name of the file to open.

AccessStr String. Specifies the type of access to the file which the programmer desires.
PAL currently supports the value AccessStr values.

(a) Write-only access. If the file exists, the file's write pointer will be
automatically set to the end of the file (append). If the file does not exist, the
file will be created.

(a+) Read/write access. If the file exists, the file's read/write pointer will be
automatically set to the end of the file (append). If the file does not exist, the
file will be created. Same as (a) except read access permitted.

(r) Read-only access. If the file exists, the file's read pointer will be
automatically placed at the start of the file. An error will result if the file
does not already exist.

(r+) Read/write access. If the file exists, the file's read/write pointer will be
automatically placed at the start of the file. An error will result if the file
does not already exist. Same as (r) except write access permitted.

(w) Write-only access. If the file exists, it will be truncated to zero bytes in
length. If the file does not already exist, the file will be created.

(w+) Read/write access. If the file exists, it will be truncated to zero bytes in
length. If the file does not already exist, the file will be created. Same as (w)
except read access permitted.

OpenFile File. File object associated with file just openned.

Comments

This operator provides the programmer with the ability to access data files on printers which
support data file storage. Data file storage can vary greatly from one PAL printer to the next. Some
printers may include floppy or hard disk drives. Other printers may include solid-state memory
cards. The programmer should consult each printer's documentation for information concerning
available data file storage.

After opening the requested file, PAL returns the file object OpenFile on the top of the stack.
Since the programmer can have an indefinite number of files open simultaneously, the PAL
operators which access files require the programmer to supply a file object as a parameter. The file
object tells each operator which file to access.

file 100

All PAL printers recognize the following standard file names.

%stdin Standard input file. Normally the communications port connected to the host
computer. Read-only access.

%stdout Standard output file. Normally the communications port connected to the host
computer. Write-only access.

%stderr Standard error output file. Normally the same as %stdout. Write-only access.

Some PAL printers, depending on their available features, will recognize various combinations of
the following standard files.

%keybrd Keyboard. Normally associated with a PS/2 style keyboard. Usually an add-on
option available for the printer. Read-only access.

%keypad Keypad. Normally associated with a printer's front panel key pad.

A file remains open for as long as the programmer maintains any reference to the file's associated
file object. PAL automatically closes a file once the programmer eliminates all references to the
file's associated file object. The following examples demonstrate the file open and close process.

1: (%stdin) (r) file
2: (123) readstring == ==

1: <<>> begin
2: /HostRead (%stdin) (r) file def
3: HostRead (123) readstring == ==
4: HostRead (123) readstring == ==
5: end

The first example attempts to read three characters from the %stdin file. Line 1 opens the file. At
the end of line 1, PAL has left the file's associated file object on the top of the stack. Line 2 uses
this file object, plus the string required by the readstring operator to perform a read from %stdin.
The == operators write the results of the readstring operation to %stdout. readstring removes
the file object and the required string from the stack. Since this eliminates all references to the file
object from the printer's memory, PAL automatically closes the file upon completion of the
readstring operation.

The second example attempts to read six characters from the %stdin file. Line 1 places an empty
dictionary on the top of the stack to host the HostRead variable. Line 2 opens the %stdin file and
saves the associated file object under the name HostRead in the previously empty dictionary.
Lines 3 and 4 then recover this file object and attempt to read three characters from %stdin. Line 5
discards the temporary dictionary from the dictionary stack. Since that dictionary contained the
only reference to the %stdin file object, PAL automatically closes the file after discarding the
dictionary.

101 fileposition

fileposition
Description

Pushes the offset of a file's read/write pointer onto the operand stack.

Usage

OpenFile fileposition PositionInt

OpenFile File. File object for open file from which to return file's read/write offset.

PositionInt Integer. Offset of file's read/write pointer from start of file. A value of zero
indicates the pointer points to the first byte of the file.

Comments

This operator provides the programmer with the means of retrieving and, if desired, remembering a
given file position. The programmer can then perform other file operations which may relocate the
file read/write pointer. Upon completion of these operations, the programmer can restore the
pointer to the remembered position by using the setfileposition operator.

Hints

The following example will remember the current position in MyFile, write the string "Hello" at
offset 23 in the file, and then restore the pointer to the original file position.

MyFile fileposition
MyFile 23 setfileposition
MyFile (Hello) writestring
MyFile exch setfileposition

findfont 102

findfont
Description

Locates a font in the font resource directory.

Usage

FontName findfont FontDict

FontName Literal name. Name assigned to font in the font directory.

FontDict Dictionary. Copy of font's dictionary from the font directory. PAL creates a new
dictionary containing the same information as the font's dictionary in the font
directory. However, the programmer and PAL can add or delete entries in this
new dictionary without affecting the original font dictionary.

Comments

PAL creates a copy of the font dictionary contained in the font directory so that the programmer
may apply scaling and other alterations to the font. Although PAL makes a copy of the original
font dictionary, the new dictionary shares its objects with the original dictionary. This means that
the programmer may add and delete entries within the new dictionary. However, the programmer
should not attempt to alter any of the objects already present within the dictionary. If existing
objects require modification, the programmer must completely replace the original object with a
new object.

103 floor

floor
Description

Returns the next lower integer value.

Usage

AnyNum floor FloorNum

AnyNum Integer or fixed-point. Value to reduce to the next lower integer.

FloorNum Integer or fixed-point. Next integer value at or below AnyNum. The type of the
returned value matches the type of the supplied parameter.

Comments

Although this operator will accept integer values, this operator has no affect upon integers. The
following table shows the affect of the floor operator upon various fixed-point values.

1.6 floor 1.0
1.5 floor 1.0
1.4 floor 1.0
1.0 floor 1.0
0.0 floor 0.0

-1.0 floor -1.0
-1.4 floor -2.0
-1.5 floor -2.0
-1.6 floor -2.0

for 104

for
Description

Performs a procedure for a specified number of iterations.

Usage

StartNum IncNum StopNum AnyProc for

StartNum Integer or fixed-point. Specifies the starting value for a counter maintained by
the interpreter for the loop.

IncNum Integer or fixed-point. Specifies the incrementing value for a counter maintained
by the interpreter for the loop.

StopNum Integer or fixed-point. Specifies the stopping value for a counter maintained by
the interpreter for the loop.

AnyProc Procedure. The procedure executed by the interpreter following every increment
of the counter.

Comments

The interpreter maintains an internal counter associated with each for loop encountered. The for
loop starts by setting this internal counter to the specified StartNum value. Then, if the counter
does not exceed StopNum, the interpreter pushes the counter value onto the stack and executes
AnyProc. Upon completion of AnyProc, the interpreter adds IncNum to the counter. This process
continues until the counter exceeds StopNum.

The interpreter always checks to see if the counter exceeds StopNum before executing the proce-
dure. This means that the interpreter will never execute the procedure if StartNum exceeds
StopNum.

PAL allows both positive and negative values for IncNum. If the programmer specifies a positive
value for IncNum, the loop will terminate when the counter exceeds StopNum in a positive
direction. In other words, when the counter is greater than StopNum.

If the programmer specifies a negative value for IncNum, the loop will terminate when the counter
exceeds StopNum in a negative direction. In other words, when the counter is less than StopNum.

Before every execution of the procedure, PAL pushes the current counter value onto the stack. The
programmer has the responsibility for removing these values from the stack. In many cases, the
procedure will consume the value as part of its normal processing. However, if the procedure does
not require the counter value, the procedure should include a pop operator to remove the value
from the stack.

Hints

The programmer can also use the for operator to accumulate a series of values on the stack for
inserting into an array or other data object. For example, the following PAL code uses an empty
procedure to create an array containing all the even numbers from 14 to 114, inclusive.

105 for

[14 2 114 {} for]

ge 106

ge
Description

Determine whether the first object is greater than or equal to the second object.

Usage

Any1Num Any2Num ge Bool
Any1Text Any2Text ge Bool

Any1Num Integer or fixed-point. First numeric object to compare.

Any2Num Integer or fixed-point. Second numeric object to compare.

Any1Text String or name. First text object to compare.

Any2Text String or name. Second text object to compare.

Bool Boolean. A value of true indicates the first object meets or exceeds the second
object. A value of false indicates the second object exceeds the first object.

Comments

In the first variant, the operator determines whether or not the first numeric parameter is greater
than or equal to the second numeric parameter. The operator will accept integer and fixed-point
objects for either parameter.

In the second variant, the operator determines whether or not the first text parameter is greater than
or equal to the second text parameter. The operator will accept string or name objects for either
parameter. PAL compares strings and names using the standard ASCII character sorting sequence
including case sensitivity. Therefore, the string (Abc) is less than the string (abc).

107 get

get
Description

Recover data from a composite or string object.

Usage

AnyArray IndexInt get ElementAny
AnyDict KeyAny get ValueAny
AnyStr IndexInt get CharInt

AnyArray Array. Array object containing desired object to recover.

AnyDict Dictionary. Dictionary object containing desired object to recover.

AnyStr String. String object containing desired character to recover.

IndexInt Integer. When used with AnyArray, index of data object within array. Arrays
begin with index zero. When used with AnyStr, index of character within string.
Strings begin with index zero.

KeyAny Any. Key associated with value object within dictionary.

ElementAny Any. Object from index IndexInt within array AnyArray.

ValueAny Any. Object associated with key KeyAny within dictionary AnyDict.

CharInt Integer. Integer value of character from index IndexInt within string AnyStr.

Comments

In the first variant, the operator recovers the object at index IndexInt within the array AnyArray.
Array indexes range from zero to N-1, where N is the number of elements in the array. The op-
erator pushes a duplicate of the desired object onto the operand stack. For composite objects, the
duplicate object shares its data with the original object in the array.

In the second variant, the operator recovers the object associated with KeyAny within the dic-
tionary AnyDict. The operator pushes a duplicate of the desired object onto the operand stack. For
composite objects, the duplicate object shares its data with the original object in the dictionary.

In the third variant, the operator recovers the character at index IndexInt within the string AnyStr.
String character indexes range from zero to N-1, where N is the number of characters in the string.
The operator pushes the integer value of the desired object onto the operand stack. PAL uses
ASCII encoding for characters within strings.

Hints

The get operator will generate an error if KeyAny does not exist within AnyDict. If the pro-
grammer does not know whether or not KeyAny will exist within AnyDict, the programmer should
use the known operator to test for KeyAny.

getinterval 108

getinterval
Description

Recover a range of data from an array or string object.

Usage

AnyArray IndexInt LengthInt getinterval SubArray
AnyStr IndexInt LengthInt getinterval SubStr

AnyArray Array. Array object containing desired array sub-range to recover.

AnyStr String. String object containing desired string sub-range to recover.

IndexInt Integer. When used with AnyArray, index of first data object in sub-range within
array. Arrays begin with index zero. When used with AnyStr, index of first
character in sub-range within string. Strings begin with index zero.

LengthInt Integer. When used with AnyArray, number of data objects in sub-range within
array. When used with AnyStr, number of character in sub-range within string.

SubArray Array. Array containing objects from the AnyArray sub-range specified.

SubStr Any. String containing characters from the AnyStr sub-range specified.

Comments

In the first variant, the operator recovers the LengthInt objects starting at index IndexInt within the
array AnyArray. Array indexes range from zero to N-1, where N is the number of elements in the
array. The operator creates the new array SubArray from duplicates of the AnyArray objects. For
composite objects, the duplicate objects share their data with the original objects in the AnyArray.

In the second variant, the operator recovers the LengthInt characters starting at index IndexInt
within the string AnyStr. String character indexes range from zero to N-1, where N is the number
of characters in the string. The operator creates the new string SubStr from the characters copied
from AnyArray.

For both variants, the specified sub-range may exceed the range of either AnyArray or AnyStr.
The intepreter will automatically adjust the requested length to the limits of the source object.

The programmer may also specify a negative value for LengthInt. A negative LengthInt value
instructs the interpreter to index into AnyArray or AnyStr starting from the end. Therefore, the last
object in AnyArray, or the last character in AnyStr will have an IndexInt value of zero. As a
result, "[0 1 2 3 4 5] 1 -2 getinterval" will return "[3 4]." For strings, "(ABCDE) 2 -3
getinterval" will return "(ABC)."

Hints

PAL will automatically adjust LengthInt for the remaining number of objects left in AnyArray, or
characters left in AnyStr. By specifying a LengthInt equal to or greater than the length of
AnyArray or AnyStr, the programmer can recover the entire end of the array or string. For

109 getinterval

example, the following sequences will return all objects or characters starting at index three
through the end of MyArray or MyString.

MyArray dup 3 exch length getinterval
MyString dup 3 exch length getinterval

PAL provides support for negative LengthInt values to allow the programmer to easily access the
end of an array or string. The following examples return the last five objects in MyArray or the last
five characters of MyString.

MyArray 0 -5 getinterval
MyString 0 -5 getinterval

globaldict 110

globaldict
Description

Pushes the global dictionary, globaldict, onto the top of the operand stack.

Usage

globaldict GlobalDict

GlobalDict Dictionary. Global dictionary, globaldict, from dictionary stack.

Comments

This operator was introduced for use in future PAL versions. The operator serves no functional
purpose at this time. The userdict discussion includes information regarding globaldict.

111 gt

gt
Description

Determine whether the first object is greater than the second object.

Usage

Any1Num Any2Num gt Bool
Any1Text Any2Text gt Bool

Any1Num Integer or fixed-point. First numeric object to compare.

Any2Num Integer or fixed-point. Second numeric object to compare.

Any1Text String or name. First text object to compare.

Any2Text String or name. Second text object to compare.

Bool Boolean. A value of true indicates the first object exceeds the second object. A
value of false indicates the second object meets or exceeds the first object.

Comments

In the first variant, the operator determines whether or not the first numeric parameter is greater
than the second numeric parameter. The operator will accept integer and fixed-point objects for
either parameter.

In the second variant, the operator determines whether or not the first text parameter is greater than
the second text parameter. The operator will accept string or name objects for either parameter.
PAL compares strings and names using the standard ASCII character sorting sequence including
case sensitivity. Therefore, the string (Abc) is less than the string (abc).

idiv 112

idiv
Description

Performs integer division of two numbers, placing the quotient back on the stack.

Usage

DividendInt DivisorInt idiv QuotientInt

DividendInt Integer. Number which the interpreter will divide by DivisorInt.

DivisorInt Integer. Number by which the interpreter will divide DividendInt.

QuotientInt Integer. Result of integer division operation.

Comments

On most printers, PAL can perform integer division significantly faster than fixed-point division.
The speed difference becomes important in procedures which the interpreter must execute
repeated.

Integer division discards any fractional portion of the quotient. Therefore, the operation "5 2 idiv"
produces the quotient "2".

113 if

if
Description

Conditionally executes a procedure based upon a boolean value.

Usage

AnyBool TrueProc if

AnyBool Boolean. Value which determines whether or not PAL executes TrueProc. A
value of true instructs the interpreter to execute TrueProc. A value of false
instructs PAL to not execute TrueProc.

TrueProc Procedure. The procedure for PAL to execute given a value of true for
AnyBool.

Comments

This operator provides the PAL programmer with the ability to optionally execute a given pro-
cedure. Typically the boolean value AnyBool would result from the execution of a comparison
operator like eq or gt.

The if operator removes both parameters from the stack before optionally invoking the specified
procedure. The if operator does not place any results onto the stack. However, the procedure may
place one or more results onto the stack if desired.

Hints

The following three PAL sequences perform entirely different functions.

1: 1 1 eq MyProc if
2: 1 1 eq /MyProc if
3: 1 1 eq {MyProc} if

The first example instructs PAL to execute the procedure MyProc before PAL executes the
operator if. As a result, the if operator will generate an error unless MyProc places a procedure
object onto the stack before terminating.

In the second example, when the if operator executes, it will encounter a boolean value (true)
followed by a literal name (/MyProc) on the stack. Since if expects a boolean value followed by a
procedure object, this will produce an error.

The third example shows the proper approach to conditionally execute the procedure MyProc. The
if operator will execute the procedure "{MyProc}". The procedure, in turn, executes the procedure
MyProc.

The specified procedure may also do more than just execute a saved procedure. The following ex-
ample sorts the values of the variables High and Low to correspond with their names.

High Low lt {/High Low /Low High def def} if

ifelse 114

ifelse
Description

Conditionally executes one of two procedures based upon a boolean value.

Usage

AnyBool TrueProc FalseProc ifelse

AnyBool Boolean. Value which determines whether or not PAL executes TrueProc or
FalseProc. A value of true instructs the interpreter to execute TrueProc. A
value of false instructs PAL to execute FalseProc.

TrueProc Procedure. The procedure for PAL to execute given a value of true for
AnyBool.

FalseProc Procedure. The procedure for PAL to execute given a value of false for
AnyBool.

Comments

This operator provides the PAL programmer with the ability to execute one of two procedures.
Typically the boolean value AnyBool would result from the execution of a comparison operator
like eq or gt.

The ifelse operator removes all three parameters from the stack before invoking the selected pro-
cedure. The ifelse operator does not place any results onto the stack. However, the executed pro-
cedure may place one or more results onto the stack if desired.

Hints

The if operator discussion includes hints which also apply to the ifelse operator.

115 imagemask

imagemask
Description

Draws a rasterized image.

Usage

WNum HNum PolBool TmArray SrcProc imagemask

WNum Integer. Width of source raster image in pixels.

HNum Integer. Height of source raster image in pixels.

PolBool Boolean. true indicates positive image polarity. false indicates negative image
polarity. For positive image polarity, image bits with a value of one indicate
black pixels. Image bits with a value of zero indicate white pixels. For negative
image polarity, image bits with a value of zero indicate black pixels. Image bits
with a value of one indicate white pixels.

TmArray Array. Specifies the source raster image's transformation matrix. At this time, the
programmer should only specify this array as follows.

[WNum 0 0 -HNum 0 HNum]

WNum Integer. Same as the width of the source raster image in pixels.

-HNum Integer. Negative height of the source raster image in pixels.

HNum Integer. Same as the height of the source raster image in pixels.

SrcProc Procedure. Procedure which supplies the source data for the raster image. PAL
continues to execute this procedure until the procedure returns sufficient data to
complete the raster image. The WNum and HNum parameters establish the
amount of data required to complete the raster image.

Comments

The interpreter relies upon the specified procedure to supply the data for the raster image. Once the
interpreter executes the procedure, the procedure must place a string object onto the stack before
terminating. Upon termination of the procedure, the interpreter recovers the string object from the
stack and appends the data to any previous string objects returned by the procedure.

The interpreter will continue to execute the procedure until the procedure has returned sufficient
data to complete the raster image. PAL determines the amount of data necessary for the raster
image from the WNum and HNum parameters.

PAL has a standardized format for representing the raster data within the strings return by the
procedure. A raster image consists of an array of bits. Each bit specifies the color of a single pixel.
As discussed above, the PolBool parameter specifies the association between bit values and colors.

The first bit of the first byte returned by the procedure specifies the color of the top left pixel of the
raster image. The next bit specifies the color of the next pixel to the right. Each successive bit

imagemask 116

specifies the color of each successive pixel to the right. This process continues for WNum bits and
pixels. Bit number WNum specifies the color of the right-most pixel on the top-most line.

Bit number WNum+1 specifies the color of the left-most pixel on the second line from the top.
Unlike most raster image formats, the PAL raster image format does not include any unused bits
between the last bit of one line and the first bit of the next line.

PAL treats the most significant bit of each byte as the first bit of the byte. PAL treats the least
significant bit of each byte as the eighth bit of the byte.

The following table illustrates the bit numbers for each pixel in a 10 by 10 pixel raster image.

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

117 imagemask

The PAL raster format requires the programmer to group the bits for the above image into bytes, as
follows.

Bit 7 6 5 4 3 2 1 0

Byte 0 00 01 02 03 04 05 06 07

Byte 1 08 09 10 11 12 13 14 15

Byte 2 16 17 18 19 20 21 22 23

Byte 3 24 25 26 27 28 29 30 31

Byte 4 32 33 34 35 36 37 38 39

Byte 5 40 41 42 43 44 45 46 47

Byte 6 48 49 50 51 52 53 54 55

Byte 7 56 57 58 59 60 61 62 63

Byte 8 64 65 66 67 68 69 70 71

Byte 9 72 73 74 75 76 77 78 79

Byte 10 80 81 82 83 84 85 86 87

Byte 11 88 89 90 91 92 93 94 95

Byte 12 96 97 98 99 xx xx xx xx

Normally, the procedure specified for the imagemask operator will simply contain a single
hexadecimal string containing the raster image data. In the case of the above image, the entire
imagemask operation would appear as follows.

10 10 true [10 0 0 -10 0 10]
 {<0C 0C C4 09 4A 80 64 94 C9 02 33 03 00>}
 imagemask

Since a 10 by 10 pixel image only requires 100 bits of data, PAL ignores all bits returns by the
procedure following bit 99. Therefore, as shown by the "xx" bits in the byte table above, PAL will
ignore the last four bits of the last byte.

The imagemask operator always draws the raster image with the lower left corner of the image
positioned at the user coordinate system origin. The current point, as established by moveto and
other operators, has no effect upon the placement of an imagemask raster image. The program-
mer must use the translate operator to position the raster image on the page.

The scaling and rotation of the user coordinate system also affects the image. The interpreter ro-
tates and scales the image so that the image's lower left corner will appear at coordinate 0,0 and the
upper right corner will appear at coordinate 1,1. Therefore, the programmer can use the scale and
rotate operators to influence the final image.

Hints

The programmer should consider applying the desired translate, rotate, and scale operations
immediately before the imagemask operation. Then, immediately following the imagemask
operation, the programmer should reverse any necessary transformations.

imagemask 118

For example, the following code will draw the above "smiling face" with the lower left corner at
0.5",0.75". The code will scale the image to 2" wide by 1" tall.

initmatrix
36 54 translate
144 72 scale

10 10 true [10 0 0 -10 0 10]
 {<0C 0C C4 09 4A 80 64 94 C8 02 33 03 00>}
 imagemask

1 144 div 1 72 div scale
-36 -54 translate

119 _imp

_imp
Description

Performs a logical or bit-wise implication operation on two boolean or integer values.

Usage

Any1Bool Any2Bool _imp ImpBool
Any1Int Any2Int _imp ImpInt

Any1Bool Boolean. First operand for the logical implication operation.

Any2Bool Boolean. Second operator for the logical implication operation.

ImpBool Boolean. Result of the logical implication operation.

Any1Int Integer. First operand for the bit-wise implication operation.

Any2Int Integer. Second operand for the bit-wise implication operation.

ImpInt Integer. Result of the bit-wise implication operation.

Comments

The following table lists the results of performing the logical implication operation on two boolean
values.

Any1Bool
false true

Any2Bool false true false
true true true

The following table lists the results for each bit position when performing the bit-wise implication
operation on two integer values.

Any1Int
0 1

Any2Int 0 1 0
1 1 1

index 120

index
Description

Recovers an object from a lower level of the operand stack.

Usage

NAny..0Any IndexInt index NAny..0Any IndexedAny

NAny..0Any Any. All objects on the operand stack.

IndexInt Integer. Index of desired object on operand stack. The top-most object, prior to
pushing IndexInt, has an index of zero. The next lower object has an index of
one.

IndexedAny Any. Requested object from operand stack.

Comments

This operator functions in a manner similar to the dup operator. However, index duplicates any
object on the operand stack. For composite objects, the original and duplicate objects will share
the same composite data.

121 initgraphics

initgraphics
Description

Restores default values to various settings within the current graphics state.

Usage

initgraphics

Comments

PAL restores the following graphics state settings to the indicated defaults.

Graphics State Setting Default Value
Transformation Matrix Device Default (Normally Points)
Path Empty
Current Point Undefined
Line Width One User Coordinate System Unit
Line Cap Style Butt End Cap

initmatrix 122

initmatrix
Description

Reset user coordinate system to PAL default coordinate system.

Usage

initmatrix

Comments

The PAL default coordinate system locates the origin at the bottom left corner of the page, a
scaling factor of 1/72", and no rotation.

123 known

known
Description

Determines whether or not a given key exists within a given dictionary.

Usage

AnyDict KeyAny known Bool

AnyDict Dictionary. Dictionary object to search for KeyAny.

KeyAny Any. Key object for which to search in AnyDict.

Bool Boolean. A value of true indicates that PAL found KeyAny within AnyDict. A
value of false indicates that PAL did not find KeyAny within AnyDict.

Comments

The get operator generates an error if the specified key object does not exist within the specified
dictionary. If the programmer does not already know that a key exists within a given dictionary, the
programmer should test for the key using the known operator before using the get operator.

le 124

le
Description

Determine whether the first object is less than or equal to the second object.

Usage

Any1Num Any2Num le Bool
Any1Text Any2Text le Bool

Any1Num Integer or fixed-point. First numeric object to compare.

Any2Num Integer or fixed-point. Second numeric object to compare.

Any1Text String or name. First text object to compare.

Any2Text String or name. Second text object to compare.

Bool Boolean. A value of true indicates the first object does not exceed the second
object. A value of false indicates the second object exceeds the first object.

Comments

In the first variant, the operator determines whether or not the first numeric parameter is less than
or equal to the second numeric parameter. The operator will accept integer and fixed-point objects
for either parameter.

In the second variant, the operator determines whether or not the first text parameter is less than or
equal to the second text parameter. The operator will accept string or name objects for either
parameter. PAL compares strings and names using the standard ASCII character sorting sequence
including case sensitivity. Therefore, the string (Abc) is less than the string (abc).

125 length

length
Description

Returns the size of the supplied parameter.

Usage

AnyArray length ElementsInt
AnyDict length PairsInt
AnyStr length CharsInt

AnyArray Array. Array object of which to return its length.

ElementsInt Integer. Number of objects in array.

AnyDict Dictionary. Dictionary object of which to return its length.

PairsInt Integer. Number of key + value pairs in dictionary.

AnyStr String. String object of which to return its length.

CharsInt Integer. Number of characters in string.

Comments

In the first variant, the operator returns the number of objects contained in the array. In the second
variant, the operator returns the number of key + value pairs contained in the dictionary. Therefore,
a dictionary will actually contain twice as many objects as the count returned by length. The third
variant returns the number of characters contained in the string.

lineto 126

lineto
Description

Appends a line to the current path which extends from the current point to the specified point.

Usage

XNum YNum lineto

XNum Integer or fixed-point. Specifies the X component of the user coordinate to
which to extend the line.

YNum Integer or fixed-point. Specifies the Y component of the user coordinate to
which to extend the line.

Comments

The lineto operator does not actually draw a line on the current page. Instead, PAL adds the line to
a drawing path which it keeps in memory. As the programmer specifies additional drawing
operations, PAL continues to append these operations to the end of the drawing path. Once the
programmer has specified the entire path for PAL to draw, the programmer uses the stroke
operator to instruct PAL to actually stroke the path onto the page. PAL also provides the
setlinewidth and setlinecap operators which influence the stroke operator.

In general, the programmer should not use lineto to finish a path around a closed object such as a
square. For a square, the drawing sequence should use lineto to draw the first three sides of the
square, but closepath for the final side. closepath instructs PAL to join the end of the closepath
line to the first point of the path. This allows PAL to smooth the transition from the last line to the
first line during the stroke operation.

After appending the lineto operation to the path, PAL updates the current point in the graphics
state to the specified XNum, YNum coordinate. This allows subsequent drawing orders to
automatically continue from the end of the line.

PAL currently restricts line drawing to horizontal and vertical lines. Therefore, in order to receive
expected results, either the XNum or YNum parameter should match the current point's X or Y
position.

Hints

The rlineto operator provides an easier means for drawing lines of a given length.

127 _localtime

_localtime
Description

Returns the current time of day and date if available.

Usage

_localtime TimeArray

TimeArray Array.

[AvailBool TotalInt YearInt MonthInt DayInt HourInt MinInt SecInt Sec100Int
DOYInt DOWInt ZoneFxp SaveInt]

AvailBool Boolean. true if printer knows the time. false if printer does not know
the time.

TotalInt Integer. Total number of seconds elapsed since 00:00:00 on January 1,
1970.

YearInt Integer. Current year. 1990, 1991, etc.

MonthInt Integer. Current month of the current year. 1 to 12.

DayInt Integer. Current day of the current month. 1 to 31.

HourInt Integer. Current hour of the current day. 0 to 23.

MinInt Integer. Current minute of the current hour. 0 to 59.

SecInt Integer. Current second of the current minute. 0 to 59.

Sec100Int Integer. Current 1/100 second of the current second. 0 to 99.

DOYInt Integer. Current day of the current year. 1 to 366.

DOWInt Integer. Current day of the current week. 1 to 7.

ZoneFxp Fixed-point. Local time zone if known by the printer. 0.0 to 23.0 or -
1.0. Provides the relationship between the local time and Greenwich
mean time (GMT). Subtracting ZoneInt from the local time provides
GMT. PAL will return -1.0 if the printer does not know the local time
zone.

SaveInt Integer. One if time based on daylight savings time. Zero if standard
time. -1 if printer does not know.

Comments

Nearly all PAL printers have the ability to maintain the current time and date so long as they
remain powered-on. Only some PAL printers have the ability to maintain the correct time and date

_localtime 128

while powered-off. The programmer should check the printer's documentation for information
concerning date and time maintenance.

At some point, all PAL printers require an operator to set the current date and time. Printers which
can maintain the correct date and time while powered-off only require the operator to set the time
once, or once following any time changes. Printers which cannot maintain the correct time when
powered-off need the operator to set the time following power-on.

In either case, if the printer never receives the correct time from the operator, the _localtime op-
erator will set AvailBool to false in the returned array. This indicates that the printer does not
know the current time or date.

In addition, even if the printer knows the correct time and date, the printer may not know the local
time's relationship to Greenwich mean time (GMT). The printer may also not know whether or not
the local time zone has daylight savings time active. Whether or not the printer knows these two
settings usually depends upon whether or not the operator told the printer. PAL will return -1 for
either or both of these values if the printer does not contain the information.

The ZoneInt and SaveInt values provide the extended time logging information often required by
wide area network systems operating across multiple time zones.

Special Considerations

Some printers may normally indicate the correct daylight savings time status at all times, excluding
two special hours during the year. At 2:00:00 AM on the last Sunday in October, daylight savings
time ends and standard time begins. During this transition, clocks are updated from 1:59:59 AM to
1:00:00 AM. Therefore, a time reading bwtween 1:00:00 AM and 1:59:59 AM on this day may
indicates either 1-2 AM daylight savings time or 1-2 AM standard time. During this two hour period
of time, some printers may automatically indicate "unknown" (-1) for SaveInt.

129 loop

loop
Description

Repetitively executes the specified procedure until the interpreter encounters an exit operator.

Usage

AnyProc loop

AnyProc Procedure. The procedure which the interpreter will repetitively execute.

Comments

PAL first removes the supplied procedure from the stack. The interpreter then continuously
executes the procedure until the interpreter encounters an exit operator. The loop operator does
not place any objects on the operand stack. However, the procedure may place objects on the stack
if desired.

Hints

The following three PAL sequences perform entirely different functions.

1: MyProc loop
2: /MyProc loop
3: {MyProc} loop

The first example instructs PAL to execute the procedure MyProc before PAL executes the
operator loop. As a result, the loop operator will generate an error unless MyProc places a pro-
cedure object onto the stack before terminating.

In the second example, when the loop operator executes, it will encounter a literal name
(/MyProc) on the stack. Since loop expects a procedure object, this will produce an error.

The third example shows the proper approach to repetitively execute the procedure MyProc. The
loop operator will repetitively execute the procedure "{MyProc}". The procedure, in turn, executes
the procedure MyProc. Since the "{MyProc}" procedure does not include an exit operator, the
MyProc procedure must contain an exit operator. Otherwise, the loop will continue to execute
forever.

The specified procedure may also do more than just execute a saved procedure. The following ex-
ample sums a series of numbers on the operand stack until it encounters a zero.

dup 0 ne {{exch dup 0 eq {pop exit} if add} loop} if

lt 130

lt
Description

Determine whether the first object is less than the second object.

Usage

Any1Num Any2Num lt Bool
Any1Text Any2Text lt Bool

Any1Num Integer or fixed-point. First numeric object to compare.

Any2Num Integer or fixed-point. Second numeric object to compare.

Any1Text String or name. First text object to compare.

Any2Text String or name. Second text object to compare.

Bool Boolean. A value of true indicates the first object does not meet or exceed the
second object. A value of false indicates the second object meets or exceeds the
first object.

Comments

In the first variant, the operator determines whether or not the first numeric parameter is less than
the second numeric parameter. The operator will accept integer and fixed-point objects for either
parameter.

In the second variant, the operator determines whether or not the first text parameter is less than
the second text parameter. The operator will accept string or name objects for either parameter.
PAL compares strings and names using the standard ASCII character sorting sequence including
case sensitivity. Therefore, the string (Abc) is less than the string (abc).

131 _ltrim

_ltrim
Description

Eliminate undesired characters from left (leading) edge of a string.

Usage

AnyStr SetStr _ltrim TrimmedStr

AnyStr String. String possibly containing character to eliminate.

SetStr String. Set of undesired characters. An empty string "()" instructs the interpreter
to trim whitespace characters.

Comments

PAL creates the new string TrimmedStr by copying the contents of AnyStr. As PAL copies the
characters from left to right, PAL compares each character to the list of characters contained in
SetStr. If PAL finds the character in SetStr it does not copy the character to TrimmedStr. As
soon as PAL finds a character from AnyStr which does not match a character in SetStr, PAL then
copies that character, and all remaining AnyStr characters to TrimmedStr.

Specifying an empty string "()" for SetStr instructs PAL to trim all whitespace characters from the
left edge of AnyStr. PAL treats all characters with a decimal value of 32 and below as whitespace
characters. This includes ASCII spaces, tabs, carriage returns, line feeds, as well as all other
standard ASCII non-printable control characters.

makefont 132

makefont
Description

Modifies a font dictionary to scale the characters with optional independent X and Y factors and
optional mirroring.

Usage

AnyFontDict TmArray makefont TmFontDict

AnyFontDict Dictionary. Font dictionary returned by the findfont operator.

TmArray Array. Transformation matrix to apply to scale the font's characters to the desired
X and Y dimensions. PAL modifies AnyFontDict. It does not create a new
dictionary.

Comments

Most users will find the scalefont simpler to use than the makefont operator. The makefont
operator requires additional complexity in relation to the scalefont operator in order to provide
additional capabilities. Users who simply wish to scale a font to a desired height should use the
scalefont operator.

The font dictionary returned by the findfont operator contains information designed to scale the
characters of the font to one user coordinate tall. The makefont operator modifies the font dic-
tionary to draw characters of any desired height and width. makefont also allows for drawing
characters as mirror images.

The font dictionary contains only relative character scaling information. PAL combines the font's
scaling information with the current user scaling factor to determine the true size of the characters.
PAL combines this information when it draws the characters.

Since fonts default to one user coordinate tall, and the user coordinate system defaults to one point
scaling, each character defaults to a height of one point. However, changing the user coordinate
scaling factor will accordingly change the default character height. For example, changing the user
coordinate system to inches changes the default character height to one inch.

The makefont operator allows the programmer to compensate for the current user coordinate sys-
tem scaling as well as establish any desired height and width for the characters. Under the default
coordinate scaling of points, the "AnyFontDict [12 0 0 12 0 0] makefont" operation will
configure the font information to draw 12 point characters. However, the same makefont
operation with a user coordinate system based on inches would produce 12 inch tall characters.
Therefore, with a user coordinate system based on inches, "AnyFontDict [12 72 div 0 0 12 72
div 0 0] makefont" will configure the font information to draw 12 point characters.

Although the scalefont operator requires less information, the makefont operator allows the user
to specify different scaling factors for the X and Y dimensions of the characters. The user can also
rotate the characters independent of rotating the coordinate system, as well as mirror the
characters. The following table summarizes the use of TmArray to produce various standard
character transformations.

133 makefont

Character's
Rotation

Mirror
Character's

X

Mirror
Character's

Y TmArray
Sample
(Below)

0 No No [X 0 0 Y 0 0] Sample-A
0 Yes No [-X 0 0 Y 0 0] Sample-B
0 No Yes Same as 180, Yes, No. Sample-F
0 Yes Yes Same as 180, No, No. Sample-E

90 No No [0 -X Y 0 0 0] Sample-C
90 Yes No [0 X Y 0 0 0] Sample-D
90 No Yes Same as 270, Yes, No. Sample-H
90 Yes Yes Same as 270, No, No. Sample-G

180 No No [-X 0 0 -Y 0 0] Sample-E
180 Yes No [X 0 0 -Y 0 0] Sample-F
180 No Yes Same as 0, Yes, No. Sample-B
180 Yes Yes Same as 0, No, No. Sample-A
270 No No [0 X -Y 0 0 0] Sample-G
270 Yes No [0 -X -Y 0 0 0] Sample-H
270 No Yes Same as 90, Yes, No. Sample-D
270 Yes Yes Same as 90, No, No. Sample-C

In the table, X and Y indicate the scale factors along the character's dimension. The X scale factor
controls the width of the character, and Y controls the height. For nearly all fonts, characters scaled
to a given height of Y will never be exactly Y units tall. Each character will be the appropriate size
as determined by the artistic design of the font in proportion to the requested overall font height.

For the same reasons, specifying a given X width for a font only requests the rendering of each
character at its appropriate artistic width equivalent to the font rendered at a height of X units. The
characters of most fonts are typically much narrower than they are tall. As a result, characters will
seldom actually approach X units wide.

Based on this information, a TmArray of "[12 0 0 12 0 0]" will produce a 12 unit font. This
would be identical to using a ScaleNum value of 12 with the scalefont operator. To produce a
double-wide variation of the same font, simply specify "[24 0 0 12 0 0]". The only difference
being the doubling of the X scaling value. To produce a double tall variation, simply double the Y
scaling value by specifying "[12 0 0 24 0 0]".

Hints

PAL does not automatically scale all the characters of a font in response to the makefont operator.
Since character scaling takes time, PAL waits to scale each character until it needs to draw the
character onto a page. PAL also rotates the characters at this time to match the orientation at which
it must draw the characters.

Once PAL scales and rotates a character, it places the character image into a character cache. This
allows PAL to use the already scaled character image if PAL must draw the character again.

mark 134

mark
Description

Pushes a special mark object onto the operand stack.

Usage

mark Mark

Mark Mark. Stack position marking object.

Comments

PAL provides a special data object type knows as a mark object. Numerous PAL operators rely
upon the use of a mark object to mark a position on the operand stack.

135 _measurepage

_measurepage
Description

Instructs PAL to measure the size of the current media if possible.

Usage

LimitsArray PagesInt _measurepage SizeArray

LimitsArray Array. Specifies the maximum dimensions of the media.

[WidthMaxNum HeightMaxNum InterPageMaxNum]

WidthMaxNum Integer or fixed-point. Specifies the maximum width of the media in
points (1/72"). This value does not use the user coordinate system.

HeightMaxNum Integer or fixed-point. Specifies the maximum height of the media in
points (1/72"). This value does not use the user coordinate system.

InterPageMaxNum
Integer or fixed-point. Specifies the maximum size of the gap between
pages in points (1/72"). This value typically only applies to continuous
media printers. This value does not use the user coordinate system.

PagesInt Integer. Specifies the number of pages across which PAL will average the media
measurements.

SizeArray Array. Gives the dimensions of the installed media.

[WidthNum HeightNum InterPageNum]

WidthNum Integer or fixed-point. Specifies the width of the media, as measured by
the mechanism, in points (1/72"). This value does not use the user
coordinate system. PAL will return -1 for this value if the mechanism
cannot perform the required measurement.

HeightNum Integer or fixed-point. Specifies the height of the media, as measured by
the mechanism, in points (1/72"). This value does not use the user
coordinate system. PAL will return -1 for this value if the mechanism
cannot perform the required measurement.

InterPageNum Integer or fixed-point. Specifies the distance between pages, as meas-
ured by the mechanism, in points (1/72"). This value does not use the
user coordinate system. This value typically only applies to continuous
media printers. PAL will return -1 for this value if the mechanism
cannot perform the required measurement, or the measurement does not
apply to the installed media.

_measurepage 136

Comments

Not all PAL printers can automatically measure the media, and those which can may not perform
all the measurements indicated. In printers that do not measure the media, the _measurepage
operator will simply return the current page settings.

Many printers must consume a certain amount of the media in order to measure it. In addition,
other PAL settings can influence the printer's ability to correctly measure the media. As a result,
the LimitArray and PagesInt parameters provide a limitation on how much media the printer
should consume. Not all printers will use PagesInt or all the entries in LimitArray. Some printers
can establish their own limits. On printers that do not actually measure the page but simply return
values, the PagesInt and LimitArray are ignored.

Pressure fed continuous media printers provide the primary reason for the existence of this opera-
tor. These types of printers use special sensors to detect the beginning and end of each page. Since
these printers use pressure rollers to advance the media, the media can slip very slightly in relation
to the printing mechanism. This slipping can result in some pages appearing slightly longer or
shorter in relation to other pages as the pages move past the sensors in the printer.

These printers must continuously adjust the feeding of the media in order to compensate for this
slipping. The printer calculates these adjustments based on the anticipated size of the media versus
the size measured by the sensors. In order to maintain accurate positioning of the media, the printer
must receive as accurate a media measurement as possible.

Unfortunately, varying media thickness and other variables can also result in pressure feed printers
not feeding the media in a consistent manner. As a result, different media types can introduce
different amounts of error.

By asking the mechanism itself to measure the media, the mechanism will automatically include
any error introduced by the media into the measurements. This will result in a measurement which
closely matches the anticipated operation of the media within the mechanism.

On pressure fed mechanisms, the programmer should specify a PagesInt value of around five or
more to ensure a reasonable level of consistency from one measurement to the next. Normal
measurement fluctuation on a pressure fed mechanism can often range as high as three points.
Excessively high fluctuations probably indicate sensor or other adjustment problems.

137 mod

mod
Description

Perform integer division and return the modulo (remainder).

Usage

DividendInt DivisorInt mod RemainderInt

DividendInt Integer. Value which PAL will divide by DivisorInt.

DivisorInt Integer. Value which PAL will divide into DividendInt.

RemainderInt Integer. Remainder following the division.

Comments

This operator calculates the remainder following an integer division. For example, "5 2 mod"
produces the result "1".

moveto 138

moveto
Description

Establishes the new current point.

Usage

XNum YNum moveto

XNum Integer or fixed-point. New current X coordinate. Specified in user coordinates.

YNum Integer or fixed-point. New current Y coordinate. Specified in user coordinates.

Comments

Most PAL drawing operators use the current point as the location at which to draw. In most cases,
the current point establishes the bottom left corner of any new object drawn.

The moveto operator also has the affect of ending any active sub-path in the graphics state and
starting a new sub-path. Depending upon the desired result, the programmer may wish to specify
closepath before a moveto in order to close the active sub-path. Using moveto without
closepath creates an open sub-path.

Closing a sub-path instructs PAL to smooth the connection between the first and last lines of the
path. PAL assumes that the start and end points of an open path either do not meet or the
programmer does not wish PAL to smooth the connection.

139 mul

mul
Description

Multiplies two numbers and returns the product.

Usage

Any1Num Any2Num mul ProductNum

Any1Num Integer or fixed-point. First number to multiply.

Any2Num Integer or fixed-point. Second number to multiply.

SumNum Integer or fixed-point. Integer if Any1Num and Any2Num are both integer,
otherwise fixed-point. Product of Any1Num and Any2Num.

Comments

The mul operator pops the top two objects from operand stack, multiplies them together, and
pushes the result back onto the operand stack. The interpreter must find two numeric objects on the
top of the stack or a typecheck error will result.

If the stack contains two integer objects, the interpreter will perform integer multiplication and
push an integer result onto the stack. The interpreter will perform fixed point multiplication and
push a fixed point result if the stack contains a fixed point object as either operand.

ne 140

ne
Description

Compare two objects for inequality.

Usage

1Any 2Any ne Bool

1Any Any. First object to compare. With the exception of integer, fixed-point, string,
and name objects, 1Any must have the same object type as 2Any. The operator
will compare integer and fixed-point objects in any combination. The operator
will also compare any combination of string and name objects.

2Any Any. Second object to compare.

Bool Boolean. A value of true indicates inequality. A value of false indicates equal-
ity.

Comments

PAL will compare for inequality any two objects of the same object type. PAL will also compare
any combination of integer and fixed-point objects, as well as any combination of string and name
objects.

PAL compares strings and names using the standard ASCII character sorting sequence including
case sensitivity. Therefore, the string (abc) does not match the string (ABC).

For composite objects, only if the two objects reference the exact same composite data does PAL
consider the objects equal. Therefore, the PAL sequence "[1 2 3] [1 2 3] ne" produces the result
"true". The sequence "[1 2 3] dup ne" produces the result "false".

In the first case, the sequence creates two unique arrays which happen to contain the same data.
Since the array objects reference different data within the printer's memory, the objects do not meet
PAL's condition for equality.

In the second case, the sequence creates a single array and a second reference to the same array
data. Since the array objects reference the same data with the printer's memory, the objects meet
PAL's condition for equality.

Hints

PAL uses the same conditions for equality and inequality for the eq and ne operators as it does
when comparing key values in dictionaries.

141 neg

neg
Description

Returns the twos-complement of any number.

Usage

AnyNum neg NegNum

AnyNum Integer or fixed-point. Number from which to return twos-complement of its
value.

NegNum Integer or fixed-point. Negative value of AnyNum. Same object type as
AnyNum.

Comments

The neg operator pops the top object from operand stack, subtracts the value from zero, and
pushes the result onto the operand stack. The result's type will match the original value's type.

newpath 142

newpath
Description

Discards any path information in the current graphics state.

Usage

newpath

Comments

PAL operators which perform drawing operations using the current path also automatically
perform a newpath operation. However, PAL provides this operator to allow PAL procedures to
explicitly discard the current drawing path.

143 not

not
Description

Performs a logical complement or bit-wise ones-complement operation on a boolean or integer
value.

Usage

AnyBool not NotBool
AnyInt not NotInt

AnyBool Boolean. Operand for the logical complement operation.

NotBool Boolean. Result of the logical complement operation.

AnyInt Integer. Operand for the bit-wise ones-complement operation.

NotInt Integer. Result of the bit-wise ones-complement operation.

Comments

The following table lists the results of performing the logical complement operation a boolean
value.

AnyBool false true
Result true false

The following table lists the results for each bit position when performing the bit-wise ones-
complement operation on an integer value.

AnyInt 0 1
Result 1 0

null 144

null
Description

Pushes a null object onto the operand stack.

Usage

null Null

Null Null. Null object.

Comments

PAL provides the null object type to use as "filler" objects in various situations. For example,
when the array operator creates a new array object, it fills the array with null objects.

145 or

or
Description

Performs a logical or bit-wise or operation on two boolean or integer values.

Usage

Any1Bool Any2Bool or OrBool
Any1Int Any2Int or OrInt

Any1Bool Boolean. First operand for the logical or operation.

Any2Bool Boolean. Second operator for the logical or operation.

OrBool Boolean. Result of the logical or operation.

Any1Int Integer. First operand for the bit-wise or operation.

Any2Int Integer. Second operand for the bit-wise or operation.

OrInt Integer. Result of the bit-wise or operation.

Comments

The following table lists the results of performing the logical or operation on two boolean values.

Any1Bool
false true

Any2Bool false false true
true true true

The following table lists the results for each bit position when performing the bit-wise or operation
on two integer values.

Any1Int
0 1

Any2Int 0 0 1
1 1 1

_ostimeget 146

_ostimeget
Description

Returns value of operating system clock

Usage

_ostimeget SytemTimeInt

SystemTimeInt Integer. Value of the operating system clock in increments of 5ms.

Comments

This operator retrieves the value of the operating system clock. The operating system clock is reset
to 0 at power up and counts in 5ms increments. It rolls over every 248 days if printer is left on for
that long!

147 _play

_play
Description

Plays a musical sequence.

Usage

ScoreStr _play

ScoreStr String. Instructions for PAL's Solo Wave Audio (SWA) generator.

Comments

This operator provides the simplest means of controlling the speaker or other audio source
available on many PAL printers. With this operator, the programmer can generate musical
sequences to create audio-feedback for a printer operator.

PAL refers to this level of audio control as Solo Wave Audio support. "Solo Wave" refers to the
fact that the printer must only generate a single pure tone (audio wave) for each requested note.

PAL printers typically provide three levels of audio generation capability in relation to Solo Wave
Audio support. Some PAL printers do not contain a speaker or other audio generator. These
printers will simply ignore Solo Wave Audio requests generated by the _play operator.

Some PAL printers provide a small buzzer, or possibly a speaker, which can produce an audio tone
with only a single frequency. Since these printers can only produce "beeps," they will respond to
Solo Wave Audio requests by generating the same "beep" for every note requested. On some of
these printers, the Solo Wave Audio sequence may have some influence over the duration of each
"beep."

Printers with more extensive Solo Wave Audio support can produce notes at different frequencies.
The total range of available notes can vary from printer to printer. If a printer receives a request to
play a note outside its supported range, the printer will typically substitute the closest supported
note.

_play 148

PAL supports seven octaves of notes. Each octave contains 12 total notes. This makes a total of 84
notes available for playing. Octaves begin with the note "C" at the low end and range up to note
"B" at the high end. The following diagram shows one octave on a piano keyboard.

C D E F G A B CB

A# C# D# F# G# A# C#

One Octave

The ScoreStr parameter to the _play operator contains a human readable sequence of simple one
and two character instructions. These instructions provide PAL with the necessary information to
play both short and long melodies.

The following table lists the one and two character instructions which can reside within ScoreStr.
PAL treats all instructions as case sensitive. Therefore, the programmer must specify the
instructions in upper or lower case exactly as shown in the table.

Instruction Operation

A..G Play the indicated note within the current octave. A..G indicates any one of the
upper case letters from A to G inclusive. As listed below, the user may use the
characters #, +, -, and . following each note to modify the note's pitch and
duration.

Ln Set the length of all subsequent notes. n specifies the note length as 1/n. For
example, L1 specifies whole-notes, L2 specifies half-notes, L3 specifies third-
notes. n may range from one to 64.

ML Selects "music legato" for all subsequent notes. Music legato plays each note for
the entire duration of its length.

MN Selects "music normal" for all subsequent notes. Music normal plays each note
for 7/8 of the note's length. A rest of 1/8 of the note's length will follow each
note.

MS Selects "music staccato" for all subsequent notes. Music staccato plays each note
for 3/4 of the note's length. A rest of 1/4 of the note's length will follow each
note.

149 _play

Nn Plays note n out of the 84 possible notes. n may range from one to 84, or zero.
N36 specifies middle C. N37 specifies middle C-sharp. N38 specifies middle D.
N0 specifies a rest note.

on Selects octave n out of the seven possible octaves for all subsequent notes. n
may range from zero to six. o0 selects the lowest octave. o3 selects the middle
octave, which contains middle C. o6 selects the highest octave. The user must
specify the "o" in lower case.

Pn Specifies a rest note of length 1/n. For example, P1 specifies a whole-note rest,
P2 specifies a half-note rest, L3 specifies third-note rest. n may range from one
to 64.

Tn Selects the tempo for all subsequent notes. n specifies the number of quarter-
notes per minute. For example, T120 selects 120 quarter-notes per minute. n
may range from 32 to 255.

> Selects the next higher octave. If the user has the highest octave selected, PAL
will ignore this instruction.

< Selects the next lower octave. If the user has the lowest octave selected, PAL
will ignore this instruction.

Sharpens the preceding note. For example, C# selects C-sharp.

+ Sharpens the preceding note. For example, C+ selects C-sharp. Same as #.

- Flattens the preceding note. For example, C- selects C-flat.

. Lengthens the preceding note by 50%. Each subsequent "." will lengthen the
note by an additional 50%. For example, "L4C" will play a quarter-note C.
"L4C#." will play a 3/8-note C-sharp. "L4E-.." will play a 7/16-note E-flat.

The following example plays the full middle scale in a rising manner at 120 quarter-notes per
second using music legato.

(T120MLL4o3CC#DD#EFF#GG#AA#B) _play

The following example plays a two octave falling scale at 70 half-notes (140 quarter-notes) per
second using music staccato.

(T140MSL2o4BB-AA-GG-FEE-DD-C<BB-AA-GG-FEE-DD-C) __play

Hints

PAL does not provide a mundane "beep" or similar operator. Instead, PAL relies upon any
operation equivalent to "(C) _play" to perform this function. The user should experiment with
different notes and durations to get the desired effect.

pop 150

pop
Description

Discards the object on the top of the operand stack.

Usage

Any pop

Any Any. Object to discard.

Comments

This operator provides the primary means for discarding unwanted objects from the top of the
operand stack.

151 print

print
Description

Writes the contents of a string to %stdout.

Usage

AnyStr print

AnyStr String. Data to write to %stdout.

Comments

PAL writes the string contents to %stdout without any changes or surrounding data.

put 152

put
Description

Store data into a composite object.

Usage

AnyArray IndexInt ElementAny put
AnyDict KeyAny ValueAny put

AnyStr IndexInt CharInt put

AnyArray Array. Array object into which to store ElementAny.

IndexInt Integer. When used with AnyArray, index within array at which to store
ElementAny. Arrays begin with index zero. When used with AnyStr, index
within string at which to store CharInt. Strings begin with index zero.

ElementAny Any. Object to store at index IndexInt within array AnyArray.

AnyDict Dictionary. Dictionary object into which to store KeyAny and ValueAny.

KeyAny Any. Key object to associate with ValueAny within dictionary AnyDict.

ValueAny Any. Value object to associate with KeyAny within dictionary AnyDict.

AnyStr String. String object into which to store CharInt.

CharInt Integer. Integer value of character to store within string AnyStr at index
IndexInt.

Comments

In the first variant, the operator store the object ElementAny at index IndexInt within the array
AnyArray. Array indexes range from zero to N-1, where N is the number of elements in the array.

In the second variant, the operator stores the key object KeyAny and the value object ValueAny as
a key + value pair into the dictionary AnyDict. If AnyDict already contains a key + value pair with
a matching key object, put replaces the entry's associated value object with ValueAny.

In the third variant, the operator stores the ASCII character with the value CharInt within the
string AnyStr at the index IndexInt. String character indexes range from zero to N-1, where N is
the number of characters in the string.

153 putinterval

putinterval
Description

Store a range of data into an array or string object.

Usage

AnyArray IndexInt SubArray putinterval
AnyStr IndexInt SubStr putinterval

AnyArray Array. Array object to receive sub-array objects.

AnyStr String. String object to receive sub-string characters.

IndexInt Integer. When used with AnyArray, index of first data object to replace within
array. Arrays begin with index zero. When used with AnyStr, index of first
character to replace within string. Strings begin with index zero.

SubArray Array. Array containing objects to replace sub-range within AnyArray.

SubStr Any. String containing characters to replace sub-range within AnyStr.

Comments

In the first variant, the operator replaces objects starting at index IndexInt within the array
AnyArray. The replacement continues for the number of elements in SubArray. Array indexes
range from zero to N-1, where N is the number of elements in the array. The operator replaces the
AnyArray objects with duplicates of objects in the array SubArray. For composite objects, the
duplicate objects share their data with the original objects in the SubArray.

In the second variant, the operator replaces characters starting at index IndexInt within the string
AnyStr. The replacement continues for the number of characters in SubStr. String character
indexes range from zero to N-1, where N is the number of characters in the string. The operator
replaces the AnyStr characters with the characters from SubStr.

quit 154

quit
Description

Terminate the PAL interpreter.

Usage

quit

Comments

This operator generally serves no purpose when used with a PAL printer. Different PAL printers
respond to this operator in different ways. Some printers simply restart the PAL interpreter after
discarding all PAL data stored within the printers memory. Other printers will simply halt
execution. In general, programmers should not use this operator.

155 readstring

readstring
Description

Read data from an open file.

Usage

OpenFile AnyStr readstring ReadStr GoodBool

OpenFile File. A file object returned by the file operator. The programmer must have
opened the file for reading.

AnyStr String. A string which establishes the number of bytes to read from the specified
file. The data contained within the string does not matter. PAL only uses the
length of the string to determine the number of bytes to read.

ReadStr String. Data read from file. The length of the string will depend upon the number
of bytes available from the file. The string will not exceed the length of AnyStr.

GoodBool Boolean. true if read was successful. false if no data available due to end of file.

Comments

PAL only uses the length of AnyStr to determine the number of bytes to read from the specified
file. PAL ignores any data contained in AnyStr.

PAL will return a string which does not exceed the length of AnyStr. If the file does not have
sufficient data immediately available, readstring will only return the immediately available data.
readstring does not block waiting for the requested amount of data to become available.

PAL generally considers as immediately available all data contained in files on some form of
storage device. Typically only files associated with some form of input device will not have data
available immediately.

If PAL returns GoodBool as false, it indicates that PAL reached the end of the file without
recovering any data. PAL will return true even if PAL encounters the end of file after reading part
of the requested data. The file must have no data remaining for PAL to return in order for PAL to
return GoodBool as false.

PAL will typically not return an GoodBool value of false for file associated with most input
devices. For most input devices, PAL assumes that new data may arrive via the device at a future
time.

repeat 156

repeat
Description

Executes the specified procedure for the specified number of iterations.

Usage

CountInt AnyProc repeat

CountInt Integer. Specifies the number of times the interpreter should execute AnyProc.

AnyProc Procedure. The procedure which the interpreter will repetitively execute.

Comments

PAL first removes the supplied iteration count and procedure from the stack. The interpreter then
executes the procedure for the specified number of iterations. The repeat operator does not place
any objects on the operand stack. However, the procedure may place objects on the stack if
desired.

The programmer can use the exit operator to prematurely terminate a repeat loop.

Hints

The following three PAL sequences perform entirely different functions.

1: 5 MyProc repeat
2: 5 /MyProc repeat
3: 5 {MyProc} repeat

The first example instructs PAL to execute the procedure MyProc before PAL executes the
operator repeat. As a result, the repeat operator will generate an error unless MyProc places a
procedure object onto the stack before terminating.

In the second example, when the repeat operator executes, it will encounter a literal name
(/MyProc) on the stack. Since repeat expects a procedure object, this will produce an error.

The third example shows the proper approach to repetitively execute the procedure MyProc. The
repeat operator will execute the procedure "{MyProc}" five times. The procedure, in turn, exe-
cutes the procedure MyProc during each iteration.

The specified procedure may also do more than just execute a saved procedure. The following ex-
ample sums ten numbers on the operand stack without removing the values from the stack.

10 {9 index} repeat 9 {add} repeat

157 rlineto

rlineto
Description

Appends a line to the current path which extends from the current point to a point a given distance
away from the current point.

Usage

XDeltaNum YDeltaNum rlineto

XDeltaNum Integer or fixed-point. Specifies the X distance over which to extend the line.

YDeltaNum Integer or fixed-point. Specifies the Y distance over which to extend the line.

Comments

The rlineto operator does not actually draw a line on the current page. Instead, it adds the line to a
drawing path which it keeps in memory. As the programmer specifies additional drawing op-
erations, PAL continues to append these operations to the end of the drawing path. Once the
programmer has specified the entire path for PAL to draw, the programmer uses the stroke
operator to instruct PAL to actually stroke the path onto the page. PAL also provides the
setlinewidth and setlinecap operators which influence the stroke operator.

In general, the programmer should not use rlineto to finish a path around a closed object such as a
square. For a square, the drawing sequence should use rlineto and/or lineto to draw the first three
sides of the square, but closepath for the final side. closepath instructs PAL to join the end of the
closepath line to the first point of the path. This allows PAL to smooth the transition from the last
line to the first line during the stroke operation.

After appending the rlineto operation to the path, PAL updates the current point in the graphics
state to the X and Y coordinate at the specified deltas from the initial coordinate. This allows
subsequent drawing orders to automatically continue from the end of the line.

PAL currently restricts line drawing to horizontal and vertical lines. Therefore, in order to receive
expected results, the programmer should always specify zero for either the XDeltaNum or
YDeltaNum parameter.

rmoveto 158

rmoveto
Description

Establishes the new current point at a relative distance from the current point.

Usage

XDeltaNum YDeltaNum rmoveto

XDeltaNum Integer or fixed-point. Relative distance along the X axis to the new current co-
ordinate. Specified in user coordinates.

YDeltaNum Integer or fixed-point. Relative distance along the Y axis to the new current co-
ordinate. Specified in user coordinates.

Comments

Most PAL drawing operators use the current point as the location at which to draw. In most cases,
the current point establishes the bottom left corner of any new object drawn.

The rmoveto operator also has the affect of ending any active sub-path in the graphics state and
starting a new sub-path. Depending upon the desired result, the programmer may wish to specify
closepath before a rmoveto in order to close the active sub-path. Using rmoveto without
closepath creates an open sub-path.

Closing a sub-path instructs PAL to smooth the connection between the first and last lines of the
path. PAL assumes that the start and end points of an open path either do not meet or the
programmer does not wish PAL to smooth the connection.

159 rotate

rotate
Description

Rotates the user coordinate system about the user coordinate system origin.

Usage

AngleNum rotate

AngleNum Integer or fixed-point. Number of degrees to rotate the user coordinate system. A
positive angle indicates a counter-clockwise rotation. A negative angle indicates
a clockwise rotation. The programmer should restrict the value to 90 degree
increments in order to ensure proper operation.

Comments

PAL applies the rotation to the current user coordinate system. Therefore, rotations accumulate.
The orders "90 rotate 90 rotate" perform the same function as "180 rotate".

Two approaches exist to using the rotate operator. The first approach works well when designing a
page which contains only a few images rotated differently from the majority of the images. The
second approach works well when drawing a large number of images in a rotated orientation.

The first approach takes advantage of the fact that the rotate operator only affects the operation of
future operators. It does not affect the current point or the points in the current path. Therefore, the
programmer can use the moveto operator to establish the current point using the programmer's
preferred rotation for the majority of the images. After establishing the current point, the
programmer can issue the rotate operator to draw the next image in the alternate rotation. After
PAL has drawn the rotated image, the programmer can issue the negative of the prior rotation to
restore the original drawing and positioning orientation.

The second approach allows the programmer to actually design the page in a rotated orientation.
When using this approach, the programmer will probably wish to combine a translate operation
with any rotate. The following diagrams illustrate the effect of rotating the user coordinate system
without performing an accompanying translate. The small rectangles show the position of the
page in relation to the user coordinate system

0 rotate
+Y

-X 0,0 +X

-Y

180 rotate
-Y

+X 0,0 -X

+Y

rotate 160

90 rotate
+X

+Y 0,0 -Y

-X

270 rotate
-X

-Y 0,0 +Y

+X

As the reader can see from the diagrams, with the origin at its default position, only zero rotation
places the +X, +Y quadrant over the page. Although PAL fully supports drawing using negative
coordinates, most programmers find it easier to use only positive coordinates. As a result, most
programmers will prefer to relocate the coordinate system origin to position the +X, +Y quadrant
over the page.

The following table shows the appropriate rotate and translate operations to adjust the coordinate
system for drawing in all four orientations. The W and H values specify the width and height,
respectively, of the page in user coordinates. The starting orientations assume that the entries in
this table were used to reach that starting orientation.

Starting
Orientation

Desired
Orientation

Rotation
(first)

Translation
(second)

0 90 90 rotate 0 -W translate
0 180 180 rotate -W -H translate
0 270 270 rotate -H 0 translate

90 0 -90 rotate -W 0 translate
90 180 90 rotate 0 -H translate
90 270 180 rotate -H -W translate

180 0 -180 rotate -W -H translate
180 90 -90 rotate -H 0 translate
180 270 90 rotate 0 -W translate
270 0 -270 rotate 0 -H translate
270 90 -180 rotate -H -W translate
270 180 -90 rotate -W 0 translate

0 rotate
+Y

-X 0,0 +X

-Y

180 rotate
-Y

+X 0,0 -X

+Y

161

90 rotate
+X

+Y 0,0 -Y

-X

270 rotate
-X

-Y 0,0 +Y

+X

Hints

The following two examples produce the exact same label image. They both draw the word
"Sideways" starting at 72,72 and running from the bottom of the page toward the top.

72 72 moveto
90 rotate
(Sideways) show
-90 rotate

90 rotate
72 -72 moveto
(Sideways) show
-90 rotate

The relationship between the first rotate and the moveto demonstrates the two approaches to
using the rotate operator. The first example demonstrates the first approach. The moveto operator
first establishes the current point using the existing coordinate system. The rotate operator then
rotates the coordinate system, but does not affect the current point.

The second example demonstrates the second approach. The example starts by rotating the
coordinate system. As a result, the programmer must specify the coordinates for the moveto
operator in the new rotated coordinate system. Examining the coordinate system diagrams
provided above in conjunction with the example will show why the Y coordinate requires a
negative value.

round 162

round
Description

Rounds the specified value to the nearest integer.

Usage

AnyNum round RoundedNum

AnyNum Integer or fixed-point. Value to round to the nearest integer.

RoundedNum Integer or fixed-point. Nearest integer to AnyNum. The type of the returned
value matches the type of the supplied parameter.

Comments

Although this operator will accept integer values, this operator has no affect upon integers. The
following table shows the affect of the round operator upon various fixed-point values.

1.6 round 2.0
1.5 round 2.0
1.4 round 1.0
1.0 round 1.0
0.0 round 0.0

-1.0 round -1.0
-1.4 round -1.0
-1.5 round -1.0
-1.6 round -2.0

163 _rtrim

_rtrim
Description

Eliminate undesired characters from right (trailing) edge of a string.

Usage

AnyStr SetStr _rtrim TrimmedStr

AnyStr String. String possibly containing character to eliminate.

SetStr String. Set of undesired characters. An empty string "()" instructs the interpreter
to trim whitespace characters.

Comments

PAL creates the new string TrimmedStr by copying the contents of AnyStr. As PAL copies the
characters from right to left, PAL compares each character to the list of characters contained in
SetStr. If PAL finds the character in SetStr it does not copy the character to TrimmedStr. As
soon as PAL finds a character from AnyStr which does not match a character in SetStr, PAL then
copies that character, and all remaining AnyStr characters to TrimmedStr.

Specifying an empty string "()" for SetStr instructs PAL to trim all whitespace characters from the
right edge of AnyStr. PAL treats all characters with a decimal value of 32 and below as whitespace
characters. This includes ASCII spaces, tabs, carriage returns, line feeds, as well as all other
standard ASCII non-printable control characters.

scale 164

scale
Description

Independently alter the scale factors for the user coordinate system along the X and Y axis.

Usage

XScaleNum YScaleNum scale

XScaleNum Integer or fixed-point. Factor by which to adjust scaling along the X axis.

YScaleNum Integer or fixed-point. Factor by which to adjust scaling along the Y axis.

Comments

PAL applies the new scale factors to the current user coordinate system. Therefore, scale factors
accumulate. The orders "2 4 scale 4 8 scale" produce the same affect as "8 32 scale".

Hints

The scale operator allows the programmer to customize the coordinate system. For example,
United States programmers might prefer to use inches as their standard unit of measure. A U.S.
programmer can quickly adjust the user coordinate scale factor from points (1/72") to inches using
the order "72 72 scale".

On the other hand, programmers in other parts of the world might prefer to use millimeters as their
standard unit of measure. These programmers can quickly adjust the user coordinate scale factor
from points to millimeters using the order "72 25.4 div 72 25.4 div scale".

The programmer should take note that changing the coordinate system scale factor also affects
fonts. Initially, a font dictionary indicates that PAL should draw the font with a height of one user
unit. Under the default coordinate system, this means one point (1/72").

If the user changes the coordinate system to, for example, one inch, the font dictionary will then
specify a one inch tall font. Under the default coordinate system, the programmer would use the
operation "12 scalefont" to make the font 12 points tall. However, if the programmer did this with
an one inch coordinate system, it would specify a 12 inch tall font. Instead, the programmer would
need to use "12 72 div scalefont" to select a 12 point font.

165 scalefont

scalefont
Description

Modifies a font dictionary to scale the characters to a desired height.

Usage

AnyFontDict ScaleNum scalefont ScaledFontDict

AnyFontDict Dictionary. Font dictionary returned by the findfont operator.

ScaleNum Integer or fixed-point. Factor by which to scale characters of the font.

ScaledFontDict Dictionary. AnyFontDict modified to scale the font's characters to the desired
height. PAL modifies AnyFontDict. It does not create a new dictionary.

Comments

The font dictionary returned by the findfont operator contains information designed to scale the
characters of the font to one user coordinate tall. The scalefont operator modifies the font dic-
tionary to draw characters of any desired height.

The font dictionary contains only relative character scaling information. PAL combines the font's
scaling information with the current user scaling factor to determine the true size of the characters.
PAL combines this information when it draws the characters.

Since fonts default to one user coordinate tall, and the user coordinate system defaults to one point
scaling, each character defaults to a height of one point. However, changing the user coordinate
scaling factor will accordingly change the default character height. For example, changing the user
coordinate system to inches changes the default character height to one inch.

The scalefont operator allows the programmer to compensate for the current user coordinate sys-
tem scaling as well as establish any desired height for the characters. Under the default coordinate
scaling of points, the "AnyFontDict 12 scalefont" operation will configure the font information to
draw 12 point characters. However, the same scalefont operation with a user coordinate system
based on inches would produce 12 inch tall characters. Therefore, with a user coordinate system
based on inches, "AnyFontDict 12 72 div scalefont" will configure the font information to draw
12 point characters.

Hints

PAL does not automatically scale all the characters of a font in response to the scalefont operator.
Since character scaling takes time, PAL waits to scale each character until it needs to draw the
character onto a page. PAL also rotates the characters at this time to match the orientation at which
it must draw the characters.

Once PAL scales and rotates a character, it places the character image into a character cache. This
allows PAL to use the already scaled character image if PAL must draw the character again.

PAL keeps the scaled and rotated character images in a special private area of ScaledFontDict.
So long as a reference to ScaledFontDict exists within the printer's memory, PAL will retain the
characters it has already scaled and rotated.

scalefont 166

The setfont operator creates a reference within the graphics state to the specified
ScaledFontDict. Therefore, so long as the graphics state continues to reference a given
ScaledFontDict, PAL will retain the character images associated with the font.

However, selecting a new font using the setfont operator causes PAL to replace the graphics
state's current font dictionary reference with a reference to the new font dictionary. As a result, the
graphics state no longer references the previous font dictionary. Unless the PAL programmer has
created another reference to the previous font's ScaledFontDict, PAL will automatically discard
the old font dictionary as well as any scaled character images associated with it.

For simple printing applications which require only a single font, managing the character cache
presents little problem. The graphics state's reference to the single ScaledFontDict maintains all
scaled character images.

For more complex printing applications which use multiple fonts, the PAL programmer should
save each ScaledFontDict for as long as the programmer requires the font to ensure that PAL
retains all character images. The following example shows a simple example of how to manage
three fonts under PAL.

1: /Font1 /PALFont1 findfont 12.00 scalefont def
2: /Font2 /PALFont2 findfont 10.00 scalefont def
3: /Font3 /PALFont3 findfont 18.00 scalefont def
4: 72 144 moveto Font1 setfont (Font1 text) show
5: 72 134 moveto Font2 setfont (Font2 text) show
6: 72 116 moveto Font3 setfont (Font3 text) show

The names PALFont1, PALFont2, PALFont3 represent any given font available on a given PAL
printer. Lines one through three locate and establish scaling factors for three arbitrary fonts. Each
line then saves the ScaledFontDict associated with each font under the names Font1, Font2, and
Font3.

Lines four through six use each of these three fonts in turn. When line five performs the sequence
"Font2 setfont", it instructs the interpreter to replace the graphics state reference to Font1 with a
reference to Font2.

At this point, if line one had not saved Font1's ScaledFontDict, PAL would have normally
discarded the ScaledFontDict associated with Font1. This would also result in PAL discarding
any cached characters associated with ScaledFontDict. However, since line one does save
ScaledFontDict, the reference to the ScaledFontDict created causes the interpreter to maintain
the ScaledFontDict in memory. As a result, PAL also maintains the scaled and rotated characters
associated with ScaledFontDict.

PAL maintains only one image for each character associated with a given ScaledFontDict.
Therefore, the programmer should save separate ScaledFontDict dictionaries for every combi-
nation of font, point size, and rotation used.

167 search

search
Description

Searches for the first occurance of one string within another string.

Usage

AnyStr SearchStr search PostStr MatchStr PreStr true
AnyStr SearchStr search AnyStr false

AnyStr String. Search to search.

SearchStr String. String to locate within AnyStr.

PostStr String. Characters from AnyStr which follow SearchStr.

PreStr String. Character from AnyStr which precede SearchStr.

MatchStr String. Characters from AnyStr which match the characters from SearchStr.
MatchStr will contain the same characters as SearchStr, but MatchStr will
exist as an entirely different string.

true Boolean. Indicates that the interpreter found SearchStr within AnyStr.

false Boolean. Indicates that the interpreter was unable to locate SearchStr within
AnyStr.

Comments

The interpreter will stop when it locates the first occurance of SearchStr within AnyStr. If the
interpreter locates SearchStr within AnyStr, the interpreter returns three new strings followed by
true. true informs the PAL procedure that a match was found. The three new strings contain the
characters before the matching characters, the matching characters themselves, and the characters
which follow the matching characters.

Since MatchStr contains the characters which matched SearchStr, MatchStr will contain the
same characters as SearchStr. However, MatchStr will exist in memory as an entirely different
string from SearchStr. Any subsequent modifications to either string will not affect the other
string.

If the interpreter cannot locate SearchStr within AnyStr, the interpreter returns AnyStr followed
by false. false informs the PAL procedure that a match was not found.

setfileposition 168

setfileposition
Description

Relocates a file's read/write pointer.

Usage

OpenFile PositionInt setfileposition

OpenFile File. File object for open file to relocate read/write pointer.

PositionInt Integer. New offset for file's read/write pointer from start of file. A value of zero
indicates the first byte of the file.

Comments

This operator allows the programmer to randomly read and write various locations of a direct
access file. This operator has no affect on sequential files. Sequential files include all of the
standard PAL files.

Hints

The following example uses setfileposition to write the string "olleH" to the file MyFile.

MyFile 4 setfileposition MyFile (H) writestring
MyFile 3 setfileposition MyFile (e) writestring
MyFile 2 setfileposition MyFile (l) writestring
MyFile 1 setfileposition MyFile (l) writestring
MyFile 0 setfileposition MyFile (0) writestring

169 setfont

setfont
Description

Establishes the specified font as the current font to use for drawing characters.

Usage

ScaledFontDict setfont

ScaledFontDict Dictionary. A font dictionary previously scaled by the scalefont operator.

Comments

In order to draw characters of a given font, the programmer must first use the findfont operator to
recover the desired font. Next, the programmer uses the scalefont operator to establish the desired
height for the characters. Finally, the programmer must establish the font as the font to use for all
future character drawing operations. The setfont operator performs this final operation.

setgray 170

setgray
Description

Establishes a gray scale printing level within the DeviceGray color space to use for subsequent
image rendering operations.

Usage

LevelNum setgray

LevelNum Integer or fixed-point. Specifies the gray level (amount of white) to apply to
subsequent image rendering operations. LevelNum can range from 0.0 (black)
to 1.0 (white).

Comments

PAL currently only supports the DeviceGray color space. This color space allows the user to
select a gray level which PAL will apply to all subsequent drawing operations. The gray level
setting specifies the percentage of white to apply to images. A setgray values of 0.0 specifies 0%
white, which implies black. A setgray value of 1.0 specifies 100% white. Intermediately values
select intermediate levels of gray.

No printer can support the full range of gray levels which the user can specify using the setgray
operator. As a result, all PAL printers translate (“map”) gray level requests to the gray levels the
printer can print. This translation process is referred to as “color realization.” Color realization
involves the conversion of a color from a “virtual” or “logical” requested color to a “real” or
“physical” color which the printer can actually print.

Different printers will perform color realization in different manners depending upon their printing
capabilities. Some printers will only support black and white printing. These printers will typically
translate gray level requests below 0.5 (50%) to black, and requests at or above 0.5 to white.

Some printers will create a pattern of black and white dots. The relative proportion of black dots to
white dots can produce the visual effect of varying levels of gray. The most advanced printers may
actually have the ability to vary the level of black applied to each dot on the page.

In general, the user can rely upon PAL printers supporting both black and white printing as a
minimum. Specifying “0 setgray” will always select black, and “1 setgray” will always select
white.

171 setlinecap

setlinecap
Description

Controls the drawing of line end caps during a stroke operation.

Usage

CapStyleInt setlinecap

CapStyleInt Integer. Selects the desired line cap style. A value of 0 selects butt end caps. A
value of 2 selects square end caps.

Comments

The graphics state contains various parameters which influence the manner in which the stroke
operator renders a path onto the page. setlinecap allows the programmer to change the line end
cap style specified in the graphics state.

The stroke operator uses the current line end cap style when drawing the starting and ending
points of open paths. For a closed path, PAL joins together the starting and ending points, so no
end points exist.

PAL currently provides two styles of line end caps — butt and square. The illustrations provided
below show the difference between the two styles. The gray area shows the actual line drawn by
the stroke operator based on the current line width. The solid line shows the center line as
specified using the lineto operator.

Butt End Caps

Square End Caps

The current line cap style has no affect until PAL encounters the stroke operator. Therefore, the
programmer may specify setlinecap either before or after using the various drawing operators to
build the desired path.

PAL uses the butt end cap style by default.

setlinewidth 172

setlinewidth
Description

Controls the width, or thickness, of lines drawn using the stroke operator.

Usage

WidthNum setlinewidth

WidthNum Integer or fixed-point. Specifies the desired line width, or thickness, in user co-
ordinate system units.

Comments

The graphics state contains various parameters which influence the manner in which the stroke
operator renders a path onto the page. setlinewidth allows the programmer to change the line
width, or thickness, specified in the graphics state.

During a stroke operation, PAL uses the line information contained in the current path to establish
the center of lines on the page. Therefore, as shown below, the line will extend for ½ WidthNum
to both sides of the center line.

Center Line WidthNum

PAL uses a default line width of one user coordinate system unit.

Hints

If the programmer scales the user coordinate system, the programmer will probably also wish to
change the line width before drawing any lines. For example, if the user changes the user coordi-
nate system to inches, the programmer probably will not want to draw one inch wide lines.

No matter how small a line width the programmer specifies, PAL guarantees to draw lines at least
one pixel thick. Specifying a line width of zero instructs PAL to draw hairlines. PAL draws
hairlines as a single pixel thick regardless of the resolution of the device. This may not work well
on extremely high resolution devices such as photo-typesetters. However, it will work fine on
common computer printers.

173 _setlocaltime

_setlocaltime
Description

Allows the user to set the printer’s internal real-time clock via PAL commands.

Usage

TimeArray _setlocaltime

TimeArray Array. Contains the new time information in a format compatible with the time
information returned by the _localtime operator.

[AvailBool TotalInt YearInt MonthInt DayInt HourInt MinInt SecInt Sec100Int
DOYInt DOWInt ZoneNum SaveInt]

AvailBool Boolean. true if TimeArray actually contains values available for
recording into the printer’s real-time clock electronics. false if the
printer should not record the values in TimeArray to the clock
electronics.

TotalInt Integer. Any non-negative value. The _setlocaltime operator only
requires a non-negative value for this value. The operator does not use
this value when setting the clock electronics. Required only for
compatibility with _localtime.

YearInt Integer. 1970..2970. The _setlocaltime operator uses this value to set
the current year within the printer’s clock electronics.

MonthInt Integer. 1..12. The _setlocaltime operator uses this value to set the
current month or the year within the printer’s clock electronics.

DayInt Integer. 1..31. The _setlocaltime operator uses this value to set the
current day of the month within the printer’s clock electronics.

HourInt Integer. 0..23. The _setlocaltime operator uses this value to set the
current hour of the day within the printer’s clock electronics.

MinInt Integer. 0..59. The _setlocaltime operator uses this value to set the
current minute of the hour within the printer’s clock electronics.

SecInt Integer. 0..59. The _setlocaltime operator uses this value to set the
current second of the minute within the printer’s clock electronics.

Sec100Int Integer. 0..99. The _setlocaltime operator uses this value to set the
current hundredth of the second within the printer’s clock electronics.
Not all PAL printer models support time resolution to within 1/100 of a
second. The user should consult documentation specific to each printer
model to determine the various resolutions supported.

DOYInt Integer. 1..366 or 0. Not used to set clock electronics. Required for
compatibility with _localtime.

_setlocaltime 174

DOWInt Integer. 1..7 or 0. Not used to set clock electronics. Required for
compatibility with _localtime.

ZoneNum Integer or fixed-point. 0..23 or -1. If a fixed-point value is used, the
fractional portion of the value must be zero at this time.

SaveInt Integer. 0, 1. The use of this value is subtly, but very significantly
different from its _localtime counterpart. See comments below.

Comments

Setting AvailBool to false effectively causes the _setlocaltime operator to not perform any
operation. However, the operator will still require that TimeArray contain the appropriate number
of elements. This interpretation of the AvailBool entry in TimeArray provides the proper
complement to the AvailBool entry returned by the _localtime operator.

_setlocaltime does not use DOYInt to set the current day of the year. For the _localtime
operator, the printer always calculates the day of the year from the other time values. The
_setlocaltime operator does impose the 1..366 range, or a filler value of zero, restriction upon
DOYInt value. The operator requires this TimeArray entry strictly for compatibility with the
TimeArray operand returned by the _localtime operator.

_setlocaltime does not use DOWInt to set the current day of the week. For the _localtime
operator, the printer always calculates the day of the week from the other time values. The
_setlocaltime operator does impose the 1..7 range, or a filler value of zero, restriction upon this
value. The operator requires this TimeArray entry strictly for compatibility with the TimeArray
operand returned by the _localtime operator.

ZoneNum establishes the relationship between the local time and Greenwich mean time (GMT).
The user can use a value of -1 to indicate that the relationship is either not important to the user’s
use of the printer, or is not known and, by implication, not important to the user’s use of the
printer. Establishing this value allows printers and/or systems in different time zones to resolve
their time relationships.

The _setlocaltime and _localtime operators interpreter the meaning of the SaveInt parameter in
different ways. However, the difference is very subtle and the user should play close attention to
this dicussion.

The SaveInt value return by _localtime indicates whether or not the current time is for daylight
savings time or standard time. The _setlocaltime SaveInt value is used to indicate whether the
locality uses daylight savings time during the year. Therefore, if the locality uses daylight savings
time but it is currently standard time at that locality, _localtime will return false for SaveInt
since the current time is not daylight savings time. However, the user would still specify true for
the _setlocaltime SaveInt value since the locality uses daylight savings time.

The real-time clock electronics in many PAL printers support the automatic updating of their
internal time during the cross overs between daylight savings time and standard time. The
_setlocaltime SaveInt value indicates whether or not the printer should enable this feature within
the printer’s electronics. Also, the _localtime operator will only return a true value during
daylight savings time if the user has instructed the printer that the locality uses daylight savings
time.

175 _setlocaltime

For the _setlocaltime operator, a SaveInt value of zero instructs the printer to disable support for
daylight savings time. A value of one instructs the printer to enable support for daylight savings
time.

setpagedevice 176

setpagedevice
Description

Provides very low-level control over page printing mechanism.

Usage

ControlDict setpagedevice

ControlDict Dictionary. Specifies various new settings to control page printing.

/CutMedia Integer. Only supported on continuous media printers which have media
cutting capability. A value of zero (0) instructs the printer not to cut the
media. A value of four (4) instructs the printer to cut the media between
every page.

/_FeedRate Integer or fixed-point. Controls the speed at which the printing
mechanism feeds the media. The entry specifies the feed rate as a per-
centage of the maximum feed rate supported by the mechanism. A value
of 100 implies full speed printing. A value of 0 implies no feeding of
the media. Typically, printers which support this parameter also enforce
a minimum feed rate. As a result, percentages which result in a feed rate
below this minimum will only result in the minimum feed rate.

/_HorzAlign Integer or fixed point. This feature is only available on the Fastmark
series of printers. Allows the printing to be shifted in the horizontal
direction. This parameter is specified in inches and effectively sets the
Horz Align feature available through the front panel.

/ImagingBBox Array. Establishes the dimensions of the logical printable area and the
logical printable area's relationship to the physical media. PAL expects
all values in points (1/72"). The user coordinate system has no affect on
this parameter. If the logical printable area exceeds the physical
printable area for the active media, PAL will reduce the logical
printable area as necessary. On the Fastmark printer line, this
parameter has no effect.

[HorzOrg VertOrg Width Height]

HorzOrg Integer or fixed-point. Establishes the location of the logical
printable area's left edge in relation to the physical media's left
edge. The user must specify this value in points (1/72").

VertOrg Integer or fixed-point. Establishes the location of the logical
printable area's bottom edge in relation to the physical media's
bottom edge. The user must specify this value in points
(1/72").

Width Integer or fixed-point. Establishes the width of the logical
printable area in points (1/72").

177 setpagedevice

Height Integer or fixed-point. Establishes the height of the logical
printable area in points (1/72").

/_ImprintLevel Integer or fixed-point. In general, this parameter specifies the amount of
energy used to apply the print image to the page. The entry specifies the
imprinting level as a percentage of the maximum imprinting level
supported by the mechanism. A value of 100 implies the maximum
imprinting level supported. A value of 0 implies no imprinting.
Typically, printers which support this parameter also enforce a mini-
mum imprinting level. As a result, percentages which result in a im-
printing level below this minimum will only result in the minimum
imprinting level. Only certain PAL printers support this parameter. The
exact meaning of the parameter varies depending upon the printing
mechanism.

/_InterPage Integer or fixed-point. Specifies the distance, in points (1/72"), between
pages on continuous form media. The current user scaling factor has no
affect upon this value. Only certain continuous forms printers support
this parameter.

/ManualFeed Boolean. Selects between manual feed and automatic feed operation.
true selects manual feed operation. false selects automatic feed opera-
tion. The exact meaning of this parameter varies between printers. On
cut sheet printers, true usually indicates that the printer should wait for
the operator to supply each sheet. On continuous media printers, true
usually indicates that the printer should wait for the operator to remove
the previous page printed before printing the next page. This parameter
is used to enable/diable the present sensor for peel and present printers.
Not all printers support this parameter.

/_ManualSenseLevel
Integer or fixed-point. Controls the sensitivity of the sensor used on
some printers to detect completion of the manual feed operation by the
printer operator. The value specifies a percentage of the maximum
sensitivity provided by the sensor. A value of 100 implies absolute
sensitivity. A value of 0 implies no sensitivity. Absolute sensitivity will
normally result in the printer constantly believing that the operator has
completed the manual feed operation. No sensitivity will normally
prevent the printer from ever detecting that the user has completed the
manual feed operation. The proper setting will normally fall somewhere
closer to the middle of the range, depending upon the operating
conditions. Not all printers support this parameter. This parameter is
ignored on the Fastmark series of printers.

/_MediaSenseType
String. Selects the media page sensing mechanism. Possible values are
(BlackBar), (Gap) or (Continuous).

/_MediaOutSenseLevel
Integer or fixed-point. Controls the sensitivity of the sensor used on
some printers to detect the presence of media within the printer. The
value specifies a percentage of the maximum sensitivity provided by the
sensor. A value of 100 implies absolute sensitivity. A value of 0 implies
no sensitivity. Absolute sensitivity will normally result in the printer
constantly believing that the printer contains media ready for printing.

setpagedevice 178

No sensitivity will normally prevent the printer from ever detecting the
presence of media within the machine. The proper setting will normally
fall somewhere closer to the middle of the range, depending upon the
operating conditions. Not all printers support this parameter. This
parameter is ignored on the Fastmark series of printers.

/MediaType String. Selects or specifies the desired input media. On printers capable
of sensing the input media, this parameter operates in a selection mode.
It allows the programmer to request a particular type of media. For
example, it allows selection between multiple input bins on a multi-bin
sheet-fed printer. On printers not capable of sensing the input media,
this parameter operates in a specification mode. It allows the
programmer to instruct the printer to assume the presence of a particular
type of media. Programmers should check documentation specific to
each printer to determine the operation of this parameter as well as the
valid string values. On the Fastmark printer line, the possible values for
this parameter are (Direct) for direct thermal media and (Transfer) for
thermal transfer media.

/OutputType String. Selects or specifies the desired media output destination. This
typically implies which of multiple output bins should receive the
printed pages. Programmers should check documentation specific to
each printer to determine the operation of this parameter as well as the
valid string values. This parameter is ignored on the Fastmark series of
printers.

/_PageSenseLevel
Integer or fixed-point. Controls the sensitivity of the sensor used on
some printers to detect the start and end of a page. The value specifies a
percentage of the maximum sensitivity provided by the sensor. A value
of 100 implies absolute sensitivity. A value of 0 implies no sensitivity.
Absolute sensitivity will normally result in the printer detecting the start
and end of pages at the wrong times. No sensitivity will normally
prevent the printer from ever detecting the start and end of pages. The
proper setting will normally fall somewhere closer to the middle of the
range, depending upon the operating conditions. Not all printers support
this parameter. This parameter is ignored on the Fastmark series of
printers.

/PageSize Array. Establishes the dimensions of the media in points (1/72"). The
user coordinate system has no affect on this parameter. Printers which
can detect media sizes may use this parameter to select the closest in-
stalled media. Printers which cannot detect media sizes may rely upon
this parameter as the actual size of the media.

[Width Height]

Width Integer or fixed-point. Establishes the width of the media in
points (1/72").

Height Integer or fixed-point. Establishes the height of the media in
points (1/72").

179 setpagedevice

/_PigmentSenseLevel
Integer or fixed-point. Controls the sensitivity of the sensor used on
some printers to detect the presence of the printing pigment. The actual
pigment used varies by printer technology. Pigment can include inked
ribbons, toner, thermal transfer ribbons, or other technologies. The
value specifies a percentage of the maximum sensitivity provided by the
sensor. A value of 100 implies absolute sensitivity. A value of 0 implies
no sensitivity. Absolute sensitivity will normally result in the printer
constantly believing that the printer contains suffient pigment to print a
page. No sensitivity will normally prevent the printer from detecting the
presence of the pigment. The proper setting will normally fall some-
where closer to the middle of the range, depending upon the operating
conditions. Not all printers support this parameter. This parameter is
ignored on the Fastmark series of printers.

/_PresentDistance
Integer or fixed point. This feature is only available on the Fastmark
series of printers. Allows the presentation distance to be set.

/_VertAlign Integer or fixed point. This feature is only available on the Fastmark
series of printers. Allows the printing to be shifted in the vertical
direction. This parameter is specified in inches and effectively sets the
Vert Align feature available through the front panel.

Comments

This operator performs extremely printer dependent configurations. The programmer should con-
sult each printer's documentation to determine the relationship of these parameters to the operation
of the printer.

PAL always performs initgraphics and erasepage operations while processing the
setpagedevice operator.

show 180

show
Description

Draw text on the page at the current coordinate using the current font.

Usage

ShowStr show

ShowStr String. Text for PAL to draw at the current coordinate.

Comments

The programmer can use the moveto or rmoveto operator to place the current coordinate at the
desired position for drawing the text. PAL provides the findfont, scalefont, and setfont operators
for establishing the desired font to use for drawing text.

The current coordinate establishes the inline and baseline position of the first character drawn. For
Roman characters, the inline position specifies the left edge of the character. The baseline position
establishes the imaginary line upon which PAL will draw the characters. Characters with decenders
will drop below the baseline.

For non-Roman fonts, PAL will treat the inline and baseline positions in a manner appropriate to
the font.

PAL automatically updates the current coordinate to the appropriate new inline and baseline
positions following the last character drawn.

181 showpage

showpage
Description

Print physical page.

Usage

showpage

Comments

PAL does not actually print any images onto the physical page until it receives the showpage
operator. The programmer sends the showpage operator to inform PAL that the interpreter has
received all drawing orders for the current page. Since no more drawing will occur on the current
page, PAL may now print the various images previously received.

By default, the showpage operator prints only a single page. The programmer may use the
_showpages operator to instruct PAL to print multiple copies of a single page image.

Once PAL has printed the page, it automatically performs erasepage and initgraphics op-
erations.

_showpages 182

_showpages
Description

Print multiple copies of a single page image.

Usage

PagesNum _showpages

PagesNum Integer or fixed-point. Specifies the number of identical copies of the page image
to produce.

Comments

This operator provides the most convenient mechanism for printing multiple copies of the same
page image. With the exception of printing multiple copies of the page image, _showpages op-
erates in exactly the same manner as showpage.

183 string

string
Description

Creates a string entirely consisting of ASCII NUL characters.

Usage

CharsInt string NullStr

CharsInt Integer. Number of characters to include in new string.

NullStr String. String containing CharsInt ASCII NUL characters.

Comments

The string operator automatically initializes the new string with ASCII NUL characters.

stringwidth 184

stringwidth
Description

Returns the current point relative movement which would occur if the user were to draw a given
string using the show operator.

Usage

AnyStr stringwidth XDeltaNum YDeltaNum

AnyStr String. The string for which PAL will calculate the current point relative
movement.

XDeltaNum Integer or fixed-point. Relative movement along the X axis.

YDeltaNum Integer or fixed-point. Relative movement along the Y axis.

Comments

The stringwidth operator allows a PAL procedure to calculate the distance a given string will
cause the current point to advance after drawing the string using the show operator. The
stringwidth operator does not actually draw the string. stringwidth performs the same current
point movement calculations as show, but without drawing the string.

The operator returns the relative movement along both the X and Y axis. For Roman character set
based languages, the interpreter will normally return zero for YDeltaNum and a positive value for
XDeltaNum. However, other languages may draw their characters from left to right or vertically.
These languages can produce a different range of possible values for XDeltaNum and
YDeltaNum.

Comments

The stringwidth provides the means for a PAL procedure to automatically center or, in the case of
Roman character set languages, right-justify text. The operator also provides the means for non-
Roman character set languages to perform equivalent justifications.

The following PAL procedure will perform the same operation as the PAL show operator,
however the procedure will automatically center the text over the current point.

/CShow {
 dup stringwidth
 exch 2 div exch 2 div rmoveto
 show
} bind def

The CShow procedure has the same usage as the show operator.

ShowStr CShow

For Roman text, the show operator draws ShowStr with the left bottom corner at the current
point. The CShow procedure draws ShowStr with the center point of the bottom edge at the
current point.

185 stringwidth

The following PAL procedure will perform the same operation as the PAL show operator,
however the procedure will automatically reverse-justify the text against the current point. For
Roman text, reverse-justification indicates right-justification.

/RShow {
 dup stringwidth
 exch neg exch neg rmoveto
 show
} bind def

The RShow procedure has the same usage as the show operator and CShow procedure.

ShowStr RShow

For Roman text, the RShow procedure draws ShowStr with the right bottom corner at the current
point.

stroke 186

stroke
Description

Renders the current path onto the page.

Usage

stroke

Comments

Drawing lines onto a page involves a two step process. First, the programmer must specify a path
consisting of the lines for PAL to draw. Second, the programmer uses the stroke operator to
instruct PAL to draw the lines.

Operators like lineto and moveto add information to a path contained within the current graphics
state. This path contains mathematical information concerning the drawing operations indicated by
the programmer. A path can consist of several sub-paths. Each sub-path consists of a series of
connected line segments. The moveto and closepath operators result in the termination of one
sub-path and the start of a new sub-path.

The closepath operator allows the programmer to specify a closed sub-path. If the programmer
terminates a sub-path using a moveto operator without a preceding closepath operator, PAL
creates an open sub-path.

PAL joins together the starting and ending points of closed sub-paths and smoothes the transition
between the connected line segments. For open sub-paths, PAL treats the start and end of the path
as simple line end points.

The stroke operator instructs PAL to render all the current sub-paths onto the page using the
current settings in the graphics state. The setlinewidth operator allows the programmer to alter the
graphics state setting which controls the width of the lines drawn by stroke. For open sub-paths,
setlinecap controls how PAL will render the start and end points of the sub-path.

Examples

The following example renders the diagram shown below the example. The example places the
lower left corner of the diagram at user coordinate 36,36 and the upper right at 54,56.

187 stroke

% First build sub-path for loop which passes through box
 36 51 moveto
 47 51 lineto
 47 41 lineto
 43 41 lineto
 43 47 lineto
 54 47 lineto
% Next build sub-path for box which surrounds loop
 39 55 moveto
 51 55 lineto
 51 37 lineto
 39 37 lineto
 closepath
% Specify line width & end cap style, then stroke sub-paths
 2 setlinewidth
 0 setlinecap
 stroke

sub 188

sub
Description

Subtracts the second number from the first number and returns the difference.

Usage

Any1Num Any2Num sub DifNum

Any1Num Integer or fixed-point. First number from which to subtract the second number.

Any2Num Integer or fixed-point. Second number to subtract from the first number.

DifNum Integer or fixed-point. Integer if Any1Num and Any2Num are both integer,
otherwise fixed-point. Result of Any2Num subtracted from Any1Num.

Comments

The sub operator pops the top two objects from the operand stack, subtracts the second from the
first, and pushes the result back onto the operand stack. The interpreter must find two numeric
objects on the top of the stack or a typecheck error will result.

If the stack contains two integer objects, the interpreter will perform integer subtraction and push
an integer result onto the stack. The interpreter will perform fixed point subtraction and push a
fixed point result if the stack contains a fixed point object as either operand.

189 translate

translate
Description

Relocate the origin of the user coordinate system.

Usage

XTransNum YTransNum translate

XTransNum Integer or fixed-point. Distance by which to relocate the X axis in current user
coordinates.

YTransNum Integer or fixed-point. Distance by which to relocate the Y axis in current user
coordinates.

Comments

PAL applies the new translation to the current user coordinate system. Therefore, translations
accumulate. The orders "2 4 translate 4 8 translate" produce the same affect as "6 12 trans-
late".

trap 190

trap
Description

Reserved operator for Applied Thermal Technologies internal use only.

191 truncate

truncate
Description

Eliminates the fractional portion of a given value.

Usage

AnyNum truncate TruncatedNum

AnyNum Integer or fixed-point. Value to truncate.

TruncatedNum Integer or fixed-point. Integer portion of AnyNum. The type of the returned
value matches the type of the supplied parameter.

Comments

Although this operator will accept integer values, this operator has no affect upon integers. The
following table shows the affect of the truncate operator upon various fixed-point values.

1.6 ceiling 1.0
1.5 ceiling 1.0
1.4 ceiling 1.0
1.0 ceiling 1.0
0.0 ceiling 0.0

-1.0 ceiling -1.0
-1.4 ceiling -1.0
-1.5 ceiling -1.0
-1.6 ceiling -1.0

undef 192

undef
Description

Removes an entry from a dictionary.

Usage

DictAny KeyAny undef

DictAny Dictionary. Specifies the dictionary from which PAL should remove the entry.

KeyAny Any. Specifies the key within the dictionary of the entry which PAL should
remove.

Comments

PAL permits the selective deletion of entries within dictionaries. Given the dictionary and the key
for an entry within the dictionary, the undef operator will delete the specified entry.

The programmer can use the undef operator in combination with the userdict operator to undefine
objects previously defined using the def operator. See the userdict discussion for details.

PAL does not generate an error if KeyAny does not exist in the specified dictionary.

193 userdict

userdict
Description

Pushes the standard user dictionary, userdict, onto the top of the operand stack.

Usage

userdict UserDict

UserDict Dictionary. Standard user dictionary, userdict, from dictionary stack.

Comments

During initialization, PAL automatically creates three dictionaries -- systemdict, globaldict, and
userdict. It then pushes these three dictionaries onto the dictionary stack in the listed order.
Therefore, the dictionary stack contains systemdict at the bottom, globaldict in the middle, and
userdict on the top.

PAL creates both userdict and globaldict as empty dictionaries. systemdict contains entries for
all the names implicit to PAL. For example, the names of operators such as add, show, etc.

When PAL encounters an executable name object, it searches the dictionaries on the dictionary
stack to locate the name. PAL starts with the dictionary on the top of the dictionary stack and
proceeds down the stack until it finds an entry for the name. If PAL cannot locate the name in any
dictionary on the stack, PAL generates an undefined error.

Normally userdict and globaldict do not contain names which match the names of PAL operators.
Therefore, PAL does not find entries for the operator names in those dictionaries as PAL
progresses down the dictionary stack. The interpreter does not find these operator names until it
reaches the bottom of the dictionary stack. It then locates the operator name in systemdict. The
systemdict entry for the operator name contains the intrinsic operator object which tells PAL
which action to actually perform.

When the programmer uses the def operator, the programmer instructs PAL to add an entry to the
user dictionary, userdict. Later, the programmer can instruct PAL to recall the information from
userdict simply by supplying the name specified with the def operator. When PAL encounters the
name, the interpreter searches the dictionary stack in the same manner as when PAL encounters the
name of an operator. Since the dictionary stack contains userdict at the top, PAL immediately
locates the programmer's entry in userdict.

When the programmer no longer requires an entry in userdict, the programmer should instruct
PAL to remove the entry. PAL provides the undef operator for this purpose. However, the undef
operator will work with any dictionary. This means the programmer must specify the dictionary
upon which undef will operate. userdict provides the mechanism by which the programmer can
undef entries created by def in userdict.

userdict 194

Examples

To remove an entry from userdict, the programmer need only use the operator userdict when
specifying the dictionary upon which undef should operate. The following example defines the
procedure DoNothing and then promptly undefines the procedure.

/DoNothing {1 2 add 3 sub pop} def
userdict /DoNothing undef

195 vmstatus

vmstatus
Description

Returns the number of bytes still available for allocation within the interpreter's virtual memory as
well as the total size of the virtual memory.

Usage

vmstatus ReservedInt UsedInt MaxInt

ReservedInt Integer. Reserved for historical compatibility. Current release PAL interpreters
always return zero for this value.

UsedInt Integer. Number of virtual memory bytes currently in use.

MaxInt Integer. Total virtual memory bytes within printer.

Comments

PAL stores all user data and procedures into a reserved area within the printer's memory called
virtual memory. PAL refers to this memory space as virtual memory because the PAL programmer
has only indirect access to the memory. PAL allows the programmer to store data and procedures
into this memory space, however PAL controls the actual placement of this information into the
virtual memory. The PAL programmer cannot directly manipulate the virtual memory area itself.

The PAL interpreter requires its own memory in order to save control information related to the
operation of the printer as well as management information relating to the PAL programmer's data
and procedures. Once PAL has allocated part of the printer's memory for this purpose, PAL
allocates all of the remaining memory for use as the PAL virtual memory.

The vmstatus MaxInt value indicates the total size, in bytes, of the virtual memory area. This
value will reflect the total amount of memory installed in the printer less the amount of memory the
PAL interpreter requires.

The UsedInt value indicates the total number of bytes which the PAL programmer currently has in
use within the virtual memory area. Even when the programmer has no data or procedures stored
within the printer, UsedInt will still show virtual memory in use by the operand stack and various
other PAL language data structures. Since PAL dynamically grows and shrinks data areas like the
operand stack to meet the user's requirements, PAL allocates these data areas within virtual
memory.

Hints

The PAL sequence "vmstatus exch sub exch pop" will leave on the top of the stack the total
number of bytes still available for allocation within virtual memory. "exch sub" exchanges
UsedInt and MaxInt on the top of the stack and then subtracts UsedInt from MaxInt to determine
the numbers of bytes not used. "exch pop" then exchanges the result with ReservedInt on the top
of the stack and discards ReservedInt from the stack. This leaves only the number of bytes
available on the top of the stack.

PAL manages the virtual memory space in an extremely dynamic manner. In addition, the size of
PAL data objects can vary from printer to printer. Therefore, the programmer should use the

vmstatus 196

vmstatus operator to determine the amount of space necessary to store a given amount of data
within a given printer.

To determine the amount of memory necessary to store a given amount of data, the programmer
should use vmstatus to determine a starting memory usage level. The programmer should then
download a representative sample of the data to the printer, and check the new memory status
using the vmstatus operator.

The PAL operator includes numerous data management optimizations. Therefore, a very small
amount of data may not provide a true representation of memory usage. In general, the progra-
mmer should probably download sufficient data to the printer to create at least a 64,000 byte
change in the value reported by vmstatus.

197 writestring

writestring
Description

Write data to an open file.

Usage

OpenFile AnyStr writestring

OpenFile File. A file object returned by the file operator. The programmer must have
opened the file for writing.

AnyStr String. A string containing the data to write to the file.

Comments

PAL will write the data contained in the string to the indicated file without any modification.

xor 198

xor
Description

Performs a logical or bit-wise exclusive-or operation on two boolean or integer values.

Usage

Any1Bool Any2Bool xor XorBool
Any1Int Any2Int xor XorInt

Any1Bool Boolean. First operand for the logical exclusive-or operation.

Any2Bool Boolean. Second operator for the logical exclusive-or operation.

XorBool Boolean. Result of the logical exclusive-or operation.

Any1Int Integer. First operand for the bit-wise exclusive-or operation.

Any2Int Integer. Second operand for the bit-wise exclusive-or operation.

XorInt Integer. Result of the bit-wise exclusive-or operation.

Comments

The following table lists the results of performing the logical exclusive-or operation on two
boolean values.

Any1Bool
false true

Any2Bool false false true
true true false

The following table lists the results for each bit position when performing the bit-wise exclusive-or
operation on two integer values.

Any1Int
0 1

Any2Int 0 0 1
1 1 0

A. Bar Code Considerations
Precision Bar Code Control

PAL's philosophy allows you to run the same PAL program on different printers and produce
labels that look the same, regardless of the printing method and printer resolution. PAL performs
this function very well for letters, lines, and boxes. There are, however, physical constraints that
prevent PAL from exactly reproducing bar codes on printers with different resolutions. PAL will
always attempt to adapt the bar codes to different printers and, although the bar codes will not
match exactly, they will usually be acceptable.

If you must have precise control, your PAL programs will become machine dependent. In op-
erational situations, this is not usually a problem. Getting precise control over bar code appearance
is not difficult. The major constraint that PAL must work with while converting bar code di-
mensions from user to device coordinates is bar code dimensions must be an integral number of
dots. There is no way to print a fraction of a dot.

To illustrate how this might be a problem, consider what happens when a PAL program requests a
Code-39 bar code with a NarrowWidth of 0.01" and a WideRatio of 2.7:1 to be printed on a
printer with 8 dots/mm (203 dots/inch). The first problem comes with the conversion of 0.01" to
dots. To make narrow bars exactly 0.01" wide would require 2.03 dots. The best PAL can do on
the 8 dots/mm printer is 2 dots. In this case, the error is probably not noticeable.

However, look what happens when the width of the wide bars is calculated by multiplying those 2
dots by 2.7. The result is 5.4 dots. PAL will round this to 5 dots, giving an effective WideRatio of
2.5:1. There is no way to avoid this problem. If precise WideRatios are required, careful selection
of the NarrowWidth with a knowledge of the print density is required. A better solution is to
choose a WideRatio that can be achieved at the current resolution (for this example, 2:1, 2.5:1, or
3:1).

Now suppose bar codes made with the above program on the 8 dot/mm printer was acceptable as
PAL made it. What happens when the same program is run on a printer with 12 dots/mm (305
dots/inch)? The NarrowWidth will be 3 dots (with an insignificant error of .05 dots/bar). The wide
bars will be 8 dots wide, giving an effective WideRatio of 2.67:1. This will give wider bar codes
than the 8 dot/mm case and the difference would be noticeable. However, both bar codes would
probably be acceptable.

200 PAL Language Reference

To take control of the bar code dimensions, you must work in dots instead of points, inches, or mil-
limeters. Doing this will, however, reduce the portability of your PAL programs. The following
PAL program will produce narrow bars exactly 2 dots wide with a ratio of 2.5:1 on an 8 dots/mm
printer. Narrow bars will be 0.0099" (0.250 mm) wide and the wide bars will be 0.0246" (0.6256
mm) wide.

/dots {203 div 72 mul} bind def
/bar {
 <<
 /NarrowWidth 2
 /WideRatio 2.5
 /CheckDigit true
 >>
 /Code39 _barcode
} bind def
72 72 moveto
(CODE39) bar
showpage

The dots procedure converts dots for an 8 dot/mm print density to points.

Bar Code Parameter Defaults
In the discussion of the individual bar code commands, default values for various parameters were
given. All dimensioned values had a parenthetical note giving the dimensions in inches for the de-
fault current transformation matrix (CTM). You should note that these numbers are invariant with
respect to the transformation matrix. This means that if the default for a given dimension is used,
you will only get the expected results if the user units are points. If, for instance, Height is set to
36, the bar code will be 0.5 inches high using the default CTM. If, however, you have scaled the
user units so that you are working in inches, the Height is still 36. Now, however, it will be 36
inches, making a very tall bar code.

There are several solutions to this problem. The easiest solutions are

1) always work in points (don't change the CTM) or

2) explicitly specify all the bar code dimensions, thus overriding the defaults.

A handy way to work in points, but still be able to specify individual dimensions in inches or milli-
meters, is to define simple procedures to locally convert the dimensions. The following example
will specify the height of a Code-128 bar code in millimeters, place the bar code at a specific loca-
tion in inches, and use the default value for NarrowWidth.

/inches {72 mul} bind def
/mm {25.4 div 72 mul} bind def
1.0 inches 1.5 inches moveto
(~bCode-128) <</Height 20 mm>> /Code128 _barcode
showpage

Determining the Width of Bar Code Bit Maps
It is sometimes necessary to compute the width of the bit map generated by the _barcode func-
tion. The following formulas will allow you to estimate this width. For the greatest precision, the
calculations should be done in dots (see discussion above).

A. Bar Code Considerations 201

The formulas use the following variables:

L The width of the bar code bit map.

X Width of narrow elements in the symbol. The units of this variable
determine the units of the answer (i.e., if X is in dots, L will be in dots).

N The number of characters including function and shift codes, if applicable,
and excluding characters covered by D, P, and W.

D Number of numerical digits in Code 128 mode C.

P Number of partial or complete pairs of digits in I 2 of 5 bar codes.

W Number of : / . and + characters in Codabar symbols.

R Wide to narrow ratio of elements in symbologies that have wide and
narrow elements.

Q Quiet zone width. Number of narrow elements (X) to leave blank at the
beginning and end of the symbol. This value is always 10 in PAL symbols.

Use the following formulas to estimate the bar code width:

Code 39 L = N + 1 + (N + 2) * (6 * X + 3 * R * X) + 2 * Q

Code 93 L = ((4 + N) * 9 + 1) * X + 2 * Q

Code 128 L = ((5.5 * D + 11 * N + 35) * X) + 2 * Q

CODABAR L = (((2 * R + 5) * N + (R - 1) * (W + 2) + (N - 1) * X) + 2 * Q

EAN-13 L = 95 * X + 2 * Q

EAN-13+2 L = 125 * X + 2 * Q

EAN-13+5 L = 153 * X + 2 * Q

EAN-8 L = 67 * X + 2 * Q

I 2 of 5 L = (P * (4 * R + 6) + 6 + R) * X + 2 * Q

UPC-A L = 95 * X + 2 * Q

UPC-A+2 L = 125 * X + 2 * Q

UPC-A+5 L = 153 * X + 2 * Q

UPC-E L = 51 * X + 2 * Q

Note that all PAL bar code bit maps have a 10X quiet zone at each end. If you need to place the
bar portion of the bit map at a specific location, start the bar code 10X to the left of the desired lo-
cation. Be sure to leave at least 10X of white space or the bar code may not scan properly. Also,
remember that UPC and EAN symbols print human-readable text in the quiet zone.

	Introduction
	PAL Fundamentals
	The PAL Interpreter
	Sending Data to PAL Printers
	PAL Objects
	� Interpreter Operation
	Operand Stack
	Post-Fix Notation
	systemdict, globaldict, userdict
	Dictionary Stack
	Virtual Memory
	Transformation Matrix

	Objects
	Simple Objects
	Integer Objects
	Fixed-Point Objects
	Boolean Objects
	String Objects
	Name Objects
	Mark Objects
	Null Objects

	Composite Objects
	Array Objects
	Dictionary Objects
	Procedure Objects

	Internal Objects
	Intrinsic Operator Objects
	File Objects
	Font Objects

	Operators
	Alphabetical Summary

	A. Bar Code Considerations
	Precision Bar Code Control
	Bar Code Parameter Defaults
	Determining the Width of Bar Code Bit Maps

